Qiaochu Shen, 1 , 7 Keiichi Hasegawa, 2 , 7 Nicole Oelerich, 3 Anna Prakken, 1 Lea Weiler Tersch, 1 Junli Wang, 4 Frowin Reichhardt, 1 Alexandra Tersch, 1 Je Cuan Choo, 1 Ton Timmers, 4 Kay Hofmann, 3 Jane E. Parker, 4 , 5 Jijie Chai, 2 , 4 , 5、6和高川毛川1、5、8, * 1植物科学研究所,科隆大学,50674年,科隆,北卡罗来纳州,德国2号科隆2 50829 Cologne,NRW,德国NRW 5植物科学卓越群(Ceplas),科隆,德国NRW,德国6现在的地址:Westlake University,Westlake University,Hangzhou 310024,Zhejiang,Zhejiang,Zhejiang,Zhejiang,中国7.这些作者7.这些作者贡献了8个同等的贡献,同等贡献了8个潜在客户 * https://doi.org/10.1016/j.chom.2024.02.016
坏死作用是由许多促炎性刺激引发的,这些促进性刺激需要激活受体相互作用的丝氨酸/苏氨酸 - 蛋白酶激酶(RIPK)1,RIPK3和混合谱系激酶结构域样型伪动物酶(MLKL)Necrosoms组合体复合物[1-3]。在该复合物的组成部分中,RIPK1被认为是对多种疾病的管理的重要焦油[1-3]。在坏死信号传导过程中,RIPK1通过刺激特殊细胞受体(例如Toll样受体(TLR)3/4),肿瘤坏死因子(TNF)受体(TNFR)1和FAS受体而激活RIPK1 [4]。在RIPK1的磷酸化之后,在RIPK1,RIPK3和MLKL(4)在高型型组盒(HMGB1)和Interleukin(IL)-1家族中,RIPK3恢复在Ripk1,Ripk3和MLKL之间形成了Necrosom复合物。
摘要 中心粒卫星是高阶组装体,由蛋白质 PCM1 支撑,以粒子形式围绕中心体运动,在基本细胞过程(尤其是纤毛生成和自噬)中发挥关键作用。尽管存在涉及磷酸化和泛素化的严格控制机制,但塑造这些结构的翻译后修饰的前景仍然难以捉摸。本文,我们报告了一种小分子坏死磺酰胺 (NSA),该小分子以结合和灭活坏死性凋亡细胞死亡的关键效应物 MLKL 而闻名,它独立于 MLKL 与中心粒卫星、纤毛生成和自噬相交叉。NSA 是一种强效氧化还原循环剂,可触发 PCM1 与选定伙伴的氧化和聚集,同时对中心粒卫星的整体分布影响最小。此外,NSA 介导的 ROS 生成会破坏纤毛生成并导致自噬标记物的积累,而 PCM1 缺失可部分缓解这一现象。总之,这些结果将 PCM1 确定为氧化还原传感蛋白,并为中心粒卫星与自噬之间的相互作用提供了新的见解。
Z-DNA结合蛋白1(ZBP1)在抗病毒免疫和炎症反应的调节中具有重要功能。ZBP1通过直接参与和激活RIPK3诱导坏死性,但是,ZBP1诱导炎症的机制,尤其是RIPK1的作用以及不可用的RIPK1和细胞死亡依赖性信号的作用仍然难以捉摸。在这里,我们表明ZBP1通过诱导RIPK3介导的坏死作用和RIPK1-Caspase-8介导的角质细胞中的RIPK3介导的坏死性凋亡引起皮肤炎症。ZBP1通过触发角质形成细胞坏死性诱导的FADD诱导小鼠诱导TNFR1非依赖性皮肤肿瘤。此外,小鼠表皮中C末端截短的组成性活性ZBP1(ZBP1CA)的转基因表达导致皮肤炎症,这仅通过消除RIPK3-MLKL依赖性坏死而部分抑制,并通过Mlklkl和Caspase-8的合并效率完全预防。重要的是,ZBP1CA诱导了caspase-8介导的皮肤肿瘤,依赖于rhim依赖但激酶活性与无关的RIPK1信号传导。此外,ZBP1CA诱导的皮肤中的炎性细胞因子产生被完全阻止了对ZBP1的细胞死亡 - 独立的独立促启动功能的凋亡和坏死性抑制。共同表明,ZBP1通过激活坏死性和RIPK1激酶活性非依赖性细胞凋亡而诱导炎症。
目标:1型糖尿病(T1D)是由促进的免疫介导的产生胰岛素的B细胞丧失引起的。炎症症对B细胞功能和生存有害,此外,凋亡和坏死都被认为是T1D中B细胞损失的机制。受体相互作用的丝氨酸/苏氨酸蛋白激酶1(RIPK1)通过用作NF-K B和MAPK激活的支架,或通过充当触发凋亡或坏死性的激酶来促进炎症。目前尚不清楚RIPK1激酶活性是否参与T1D病理学。在本研究中,我们研究了不存在RIPK1激活是否会影响对免疫介导的糖尿病或饮食诱导肥胖症(DIO)的敏感性。方法:含有模仿丝氨酸25磷酸化的突变的RIPK1敲击小鼠系(RIPK1 S25D/S25D),它废除了RIPK1激酶活性,用于评估RIPK1在免疫介绍的糖尿病或饮食诱发的肥胖症中的体内作用(DIO)。在已知诱导RIPK1依赖性细胞凋亡/坏死性的条件下,分析了体外,B细胞死亡和RIPK1激酶活性。结果:我们证明RIPK1 S25D/S25D小鼠呈现出正常的葡萄糖代谢和B细胞功能。此外,RIPK1 S25D / S25D和RIPK1 h和Ripk1 h和Ripk1 h和Ripk1 hime介导的糖尿病和DIO没有差异。尽管RIPK1激酶和其他坏死作用效应子(RIPK3和MLKL)的强烈激活,而TNFbv6ÞZVAD却没有观察到小鼠胰岛或人类B细胞中的细胞死亡。结论:我们的结果对比最近的文献表明,大多数细胞类型在RIPK1激活后发生坏死。这种特殊性可能会反映出B细胞无力增殖和自我更新的适应。2023作者。由Elsevier GmbH出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
心血管疾病是全球死亡的最常见原因。冠心病(CHD)是最常见的心血管疾病类型。它的特征是由于冠状动脉变窄而导致心肌功能障碍,导致血液供应不足。CHD是全球老年患者的死亡原因之一,其风险持续上升。在小鼠模型中,可以通过肠道微生物(GM)转移传播对CHD和血栓形成的敏感性(Brown and Hazen,2018)。这种传播可能与以下事实有关:微生物群落影响宿主代谢,并通过微生物相关的分子模式通过宿主模式识别受体感知,这会影响心血管疾病的发病机理。针对微生物的治疗策略有望预防或治疗心血管疾病(Brown and Hazen,2018)。正常个体和冠状动脉疾病患者之间的GM组成中存在显着差异。在健康的人中,肠道菌群主要包括坚硬,细菌植物,肌动杆菌和子宫菌,它们在维持肠道健康和免疫系统方面起着关键作用。相比之下,冠心病患者的肠道成分和结构发生了显着变化。这些变化包括某些细菌组的增加或减少,例如毛霉菌蛋白酶科和Ruminococaccaceae,以及病原体或机会性病原体的数量增加(Dai等人,2020年)。迄今报道的潜在生物标志物包括三甲胺氧化胺(TMAO),短链脂肪酸(SCFA)和次胆汁酸。例如,tmao是一种肠道的代谢产物,与动脉粥样硬化的形成密切相关和CHD的发展。研究表明,TMAO通过影响血小板活性和胆固醇代谢来促进动脉粥样硬化的形成(Tang and Hazen,2017; Witkowski等,2020)。先前的研究表明,GM与CHD之间存在很强的因果关系(Jiang等,2023; Yang等,2024),GM和代谢物的丰度变化可能会影响CHD的进展(Wang等,2024)。大量证据表明,转基因在诸如代谢性疾病和心血管疾病等疾病的发作和进展中起着至关重要的作用(Wen等,2022; Qiao等,2023)。临床研究发现,CHD和认知障碍患者的GM发生了显着变化(Sun等,2019; Paiva等,2020)。GM的变化可以通过诸如慢性炎症,促进动脉粥样硬化和促进血栓形成的机制来介导CHD的发展(Liyu等,2022)。一项研究从转录组的角度分析了GM和CHD之间的关系,发现fusicatenibacter可以通过影响几个与CHD相关的靶标,即GBP2,MLKL和CPR65高度相关(Chen等,2023)。另一项研究表明,与CHD相关的肠道菌群中的性别营养不良,有可能导致心血管疾病发生率中观察到的性别差异(Garcia-Fernandez等,2024)。许多草药也可以通过调节GM的组成,降低三甲胺-N-氧化物(TMAO)水平来对CHD进行干预,从而增加