由于CMOS技术的物理规模限制,摩尔定律接近终结,替代计算方法已引起了相当大的关注,这是改善计算性能的方法。在这里,我们评估了一种新方法的性能前景,基于与约瑟夫森 - 界面的无序超导循环进行节能神经形态计算。突触权重可以存储为与多个约瑟夫森 - 界面(JJ)相连的三个超导环的内部捕获式磁通状态,并以以控制方式以离散通量(量化的通量)施加的输入信号调节。稳定的捕获的磁通状态将传入通量通过不同的途径,其流量统计量代表不同的突触权重。我们使用这些Fluxon Synapse设备的阵列探讨了矩阵 - 矢量 - 义务(MVM)操作的实现。我们研究了MNIST数据集的在线学习的能源效率。我们的结果表明,与其他最先进的突触设备相比,Fluxon Synapse阵列可以减少100倍的能量消耗。这项工作提出了概念验证,该概念将为基于超导材料的高速和高能节能的神经形态计算系统铺平道路。
摘要 - 我们提出了一种新的变异自动编码器(VAE),类融合的VAE(CI-VAE)的变体,该变体可以在同一类的任意观察对之间进行相互关系。ci-vae在潜在空间上将一般VAE架构与线性歧视层结合在一起,以实施潜在空间的构造,在该空间中,来自不同类别的观测值是线性分离的。这允许在同一类的两个任意观察之间进行强大的潜在线性遍历和数据生成,该观察在科学和工程中具有潜在的应用。一种特定的应用是增强对涉及健康细胞疾病或癌症的生物学过程的理解。我们证明了CI-VAE在手写数字的MNIST数据集上的有效性,这表明它显着提高了类别的类别线性遍历和与VAE相比的vae,同时保持了可比的重建错误。我们还将CI-VAE应用于结肠癌单细胞基因组学数据的研究,表明使用CI-VAE在正常细胞和肿瘤细胞之间插值可能会增强我们对癌症发展机制的理解。
由于隐私保护,将所有数据上传到中心位置的传统机器学习方法变得不可行。联邦学习是一种保护隐私的分布式机器学习范式,已被提出作为满足隐私要求的解决方案。通过使多个客户端协作学习共享的全局模型,模型参数而不是本地私有数据将在隐私限制下交换。然而,与集中式方法相比,联邦学习在对参与者之间非独立且同分布 (non-iid) 的数据进行训练时性能会下降。在实践中,机器学习总是会遇到类别不平衡问题,这会导致对少数类的预测不佳。在这项工作中,我们提出了 FedBGVS,通过采用平衡的全局验证集来减轻类别偏差的严重程度。使用平衡全局验证分数 (BGVS) 改进了模型聚合算法。我们通过对经典基准数据集 MNIST、SVHN 和 CIFAR-10 以及公共临床数据集 ISIC-2019 进行的实验来评估我们的方法。实证结果表明,我们提出的方法在标签分布偏差和类别不平衡设置中优于最先进的联邦学习算法。
摘要 — 由于其事件驱动的特性,脉冲神经网络 (SNN) 被认为是计算效率高的模型。脉冲神经元编码有用的时间事实并具有高抗噪性。然而,时空复杂性的高质量编码及其对 SNN 的训练优化受到当前问题的限制,本文提出了一种新颖的分层事件驱动视觉设备,以探索信息如何通过生物可控机制在视网膜中传输和表示。该认知模型是一个增强脉冲的框架,包括 CNN 的功能学习能力和 SNN 的认知能力。此外,该视觉设备以生物现实主义的方式建模,具有无监督学习规则和高级脉冲发放率编码方法。我们在一些图像数据集(MNIST、CIFAR10 及其嘈杂版本)上对它们进行训练和测试,以表明我们的模型可以处理比现有认知模型更有价值的数据。本文还提出了一种新颖的量化方法,使所提出的基于脉冲的模型更适合神经形态硬件实现。结果表明,这种联合 CNN-SNN 模型可以获得更高的聚焦精度并获得更有效的泛化能力。
2019 年 8 月 - 至今 博士研究(机器学习、自然语言处理、计算机视觉)普渡大学(指导老师:David Inouye 博士),印第安纳州西拉斐特 • • 创建一个因果基础的生成式 AI 模型,该模型生成反事实示例来回答以下问题“如果发生 X 而不是 Y,情况会是什么样子?” (例如,如果我在 B 医院而不是 A 医院拍摄的胸部 X 光片会是什么样子。) • 派生出可解释领域翻译的方法,用于向人类操作员解释分布变化,可用于系统监控或知识发现。 • 根据《星际争霸 II》的人类比赛构建了一个新的大规模多智能体计算机视觉 (CV) 数据集,该数据集表现出复杂且不断变化的智能体行为,产生了 180 万张具有多种数据表示的图像,例如可以用作 CIFAR10 和 MNIST 的替代品。 • 创建了一种轻量级机器学习算法,该算法使用深度密度模型来检测分布的变化,并将变化定位到导致变化的特定问题特征,从而允许以很少的额外开销进行在线监控。
最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
摘要 - 在有镜的物理学的背景下开发的调整网络试图近似阶列量 - 自由度降低,而自由度降低,仅在n中仅是多项式的,并作为部分合成的较小张量的网络排列。正如我们最近在量子多体物理学的背景下所证明的那样,通过对此类网络中张量的规范多核(CP)等级对张力的构成施加约束,可以进一步降低计算成本[ARXIV:2205.15296]。在这里,我们演示了如何在机器学习中使用具有CP等级约束和张量液位的树张量网络(TTN)。该方法在时尚 - mnist图像分类中的表现优于其他基于张量的基于网络的方法。分支比b = 4的低级TTN分类器达到90.3%的测试集精度,计算成本低。主要由线性元素组成,张量网络分类器避免了深度神经网络的消失梯度问题。CP等级约束具有额外的优点:可以更自由地减少参数的数量,以控制过度拟合,改善概括属性并降低计算成本。他们允许我们使用具有较高分支比率的树木,从而大大提高了表示能力。
由于隐私保护,将所有数据上传到中心位置的传统机器学习方法变得不太可行。联邦学习是一种保护隐私的分布式机器学习范式,已被提出作为符合隐私要求的解决方案。通过使多个客户端协作学习共享的全局模型,将在隐私限制下交换模型参数而不是本地私有数据。但是,与集中式方法相比,联邦学习在对参与者之间的非独立同分布 (non-i.i.d.)数据进行训练时性能会下降。在实践中,机器学习中总是会遇到类别不平衡问题,这会导致对少数类别的预测不佳。在这项工作中,我们提出 FedBGVS 通过使用平衡的全局验证集来减轻类别偏差的严重程度。使用平衡全局验证分数 (BGVS) 改进了模型聚合算法。我们通过对经典基准数据集 MNIST、SVHN 和 CIFAR-10 以及公共临床数据集 ISIC-2019 进行的实验来评估我们的方法。实证结果表明,我们提出的方法在标签分布偏差和类别不平衡设置中优于最先进的联邦学习算法。
抽象的光学神经网络(ONNS),可以使低潜伏期和无电磁干扰的高平行数据处理,已成为快速和节能处理和计算的可行参与者,以满足对哈希速率不断增长的需求。采用非易失性相变材料的光子记忆可以实现零静态功耗,低热横式谈话,大规模和高能量的光子神经网络。尽管如此,基于相位材料的光子记忆的开关速度和动态能量消耗使它们不适合原位训练。在这里,通过将一组相变薄膜与销钉二极管的微孔谐振器集成在一起,展示了双功能光子存储器,既可以启用5位存储和纳米秒挥发性调制。首次提出了与纳秒调制集成的电气变化材料驱动的光子记忆的概念,以允许在ONN中进行快速的原位训练和零静态功耗数据处理。ONNS具有由我们的光子存储器构建的光卷积内核在理论上构建的,当由MNIST手写数字数据库测试时,预测的准确性高于95%。这为构建具有高速原位训练能力的大规模非易失性ONN提供了可行的解决方案。
由于具有二进制和事件驱动架构,脉冲神经网络 (SNN) 在节能神经形态芯片方面具有巨大潜力。SNN 主要用于分类任务,但在图像生成任务方面的探索有限。为了填补这一空白,我们提出了一种脉冲扩散模型,该模型基于矢量量化离散扩散模型。首先,我们开发了一个带有 SNN 的矢量量化变分自动编码器 (VQ-SVAE) 来学习图像的离散潜在空间。在 VQ-SVAE 中,使用脉冲发放率和突触后电位对图像特征进行编码,并设计了一个自适应脉冲生成器来以脉冲序列的形式恢复嵌入特征。接下来,我们在离散潜在空间中执行吸收态扩散,并构建一个带有 SNN 的脉冲扩散图像解码器 (SDID) 来对图像进行去噪。我们的工作是第一个完全从 SNN 层构建扩散模型的工作。在 MNIST、FMNIST、KMNIST、Letters 和 Cifar10 上的实验结果表明,Spiking-Diffusion 优于现有的基于 SNN 的生成模型。我们在上述数据集上分别实现了 37.50、91.98、59.23、67.41 和 120.5 的 FID,与最先进的工作相比,FID 减少了 58.60%、18.75%、64.51%、29.75% 和 44.88%。我们的代码将在 https://github.com/Arktis2022/Spiking-Diffusion 上提供。