对具有高功率和较大能量密度的电池的需求不断增长,例如锂离子电池(LIBS)[1,2]。但是,由于锂离子电池中传统商业石墨阳极的容量仅为372 mA H g-1 [3],因此至关重要的是,识别具有较高能量密度,功率能力,成本效益,安全性,安全性和稳定性的新的阳极材料对商业能量存储的储存[4,5]。MXENE材料具有潜力,但仍有一些缺点和挑战[6]。与其他负电极材料相比,MXENE具有较低的特定能量,这需要更多的材料提供相同的容量,从而导致电池量较大[7]。在充电和放电周期期间,由于结构降解和固体电解质界面(SEI)膜的不可估力的形成,MXENE的能力逐渐降低[8]。没有什么,Mxene材料也具有许多有利的特性,例如
二维早期过渡金属碳化物、氮化物和碳氮化物 (MXenes) 家族规模庞大且发展迅速,引起了材料科学和材料化学界的极大兴趣。MXenes 被发现仅十多年前,已在从储能到生物和医学等各种应用领域展现出巨大潜力。过去两年来,人们在研究 MXenes 用作润滑剂添加剂、复合材料中的增强相或固体润滑涂层时的机械和摩擦学性能方面进行了越来越多的实验和理论研究。尽管对 MXenes 在干燥和润滑条件下的摩擦和磨损性能的研究仍处于早期阶段,但由于 MXenes 具有出色的机械性能和化学反应性,使其能够适应与其他材料结合,从而提高其摩擦学性能,因此该领域的研究取得了快速发展。从这个角度来看,我们总结了 MXene 摩擦学领域最有希望的成果,概述了未来需要进一步研究的重要问题,并提供了我们认为对专家以及 MXenes 研究新手(特别是新兴的 MXene 摩擦学领域)有用的方法建议。
引言23自2004年24日成功去除石墨烯1以来进行的二维(2D)材料的积极研究导致发现了一种新的,新兴的2D材料,这些材料由碳化物和过渡金属的硝酸盐组成,25种称为Mxenes 2。mxenes是二维材料,具有通用式M n+1 x n t x,其中m是早期过渡26金属(例如,Ti,ti,v,cr),x是碳,氮或碳二氮,T是由O,OH,F,F,27和/或Cl 2组成的表面终止组。由于其引人注目的物理,电子和化学特性,MXENES吸引了巨大的理论28和在各种应用中的实验研究兴趣,例如锂离子电池3,4,气体传感器5,氢存储29 6和热电学7。在这些研究中,将近70%专用于Ti 3 C 2 t X,这是有史以来第一个实验30合成的MXENE 8。迄今为止,它被认为是最全面研究的MXENE。31 Ti 3 C 2 T X可以选择性地从其最大相位与氢氟酸(HF)蚀刻,其中A是元素元素32通常来自元素周期表的第13和14组(对于Ti 3 C 2 T x x)8。由于蚀刻后高反应性Ti表面,33去角质Ti 3 C 2 t X通常由随机分布的表面官能团(即O,OH,F)组成,这些表面官能团统称为34表示为T x 9。然而,由于模拟混合终止表面的复杂性和计算成本,理论研究中的大部分都考虑了Bare Ti 3 C 2 10,11或均匀终止的Ti 3 C 2 T X,具有单个功能性36组4,7,12-14。58这通常被视为MXENES 15的第一代和第二代模型。早期的实验努力,例如粉末X射线衍射(XRD)8,高分辨率透射电子显微镜(TEM)8,9,16和X射线原子对38分布函数(PDF)17,用于洞悉功能组成分的分布。然而,每种方法都因其对氢的不敏感而受到阻碍,这对于理解表面终止15至关重要。40因此,使用由高质量中子总散射法支持的原子对分布函数,Wang等。15 41获得了在不同条件下合成的Ti 3 C 2 t X结构的第一个分辨率,并提出了Ti 3 C 2 T X的多层42结构模型是MXENES的下一代模型。43受Wang等人的作品的启发,几项理论研究的重点是混合功能性44个组终止的影响(O,OH,F)。Caffrey 18提出了一个经验模型,以研究混合终止的Ti 3 C 2 T x和V 2 Ct X结构的结构变化和45个电化学性能的变化,而均匀终止的46个表面的变化。根据Caffrey研究,经验模型再现了与实验数据一致的晶格参数,状态的电子密度和47个工作函数。迄今为止,关于使用簇扩展方法的2D MXENE的表面功能化的最全面的研究和48个组成是由49 Ibragimova等人进行的。19。%和10 wt。%HF。在该研究中,在标准氢电极(SHE)50条件下,最佳O:OH:F组成为50:25:25,具有相似的分布模式,这些模式不受厚度和MXENE类型的影响。51然而,文献中仍然没有调整混合表面终止的设计途径。在PDF表征中使用52个能量色散X射线光谱(EDX),Wang等。15估计多层ti 3 c 2 t x样品中的平均原子比为53 o:f,用48 wt蚀刻时为0.85和1.4。基于54个O:F比率,Wang等。 得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。 此外,55总体结晶度和排序也受HF浓度的影响。 较高的HF浓度在表面终止中产生较高的56 F组成。 直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。 因此,受Wang等人的发现的启发。基于54个O:F比率,Wang等。得出T X的化学计量法,等于O 0.1(OH)0.8 F 1.1和O 0.13(OH)1.04 F 0.83。此外,55总体结晶度和排序也受HF浓度的影响。较高的HF浓度在表面终止中产生较高的56 F组成。直觉上,这与57个可用的f的可能性增加是一致的,可终止HF浓度较高的新鲜蚀刻的Ti表面。因此,受Wang等人的发现的启发。
nbslcnls 基于 MXene 的传感材料:现状和未来前景 Vishnu Sankar Sivasankarapillai, 1 Tata Sanjay Kanna Sharma, 2, 3 Kuo-Yuan Hwa 2, 3 Saikh Mohammad Wabaidur, 4 Subramania Angaiah 5 和 Ragupathy Dhanusuraman 1,* 摘要 MXenes 是一类二维多功能材料,自 2011 年被发现以来一直处于快速发展阶段。MXenes 具有高导电性和表面积、改进的机械性能、亲水性以及通过修改功能团来调整表面性能的能力等优异特性。这些特性使 MXenes 成为广泛应用的合适候选者,包括生物医学和储能。本综述重点介绍了最近报道的用于传感器应用的各种类型的 MXenes。首先介绍了 MXenes 的制造和特性的现状,然后讨论了它们作为压阻和生化传感器的应用。这涉及机械应变检测以及与生物医学应用相关的生物分子、生物标志物和药物分子的检测。最后,简要讨论了未来的前景,这将有助于研究人员确定当前情况的局限性并制定新的战略,重点是开发基于 MXene 的新型、高效和灵敏的传感器。
最近发现二维(2D)过渡金属碳化物和硝酸盐(MXENES)由于其独特的电气,光学和化学性质而受到了极大的关注。这些非凡的特性使它们成为各种应用,包括通过光热效应的多模式肿瘤疗法的合适候选者。在这项工作中,我们演示了如何通过应用连续的超声处理过程来减少1-5 µm大的Ti 3 C 2单层MXENE片。不同的微观技术已被用来可视化超大单层Ti 3 C 2纳米片的形成。所制备的Mxene纳米片在水和乙醇中表现出良好的溶解度。此外,使用(3-氨基丙基)三乙氧基硅烷(Aptes)和聚(3,4-乙二烯二苯乙烯)聚苯乙烯磺酸盐(PEDOT:PSS)用于MXENE纳米片的表面修饰,以打开随后的抗体生物套件的可能性。PEDOT:PSS改善了纳米片的光热转化性能,这是通过在辐射时从48.6ºC增加到58.1ºC的记录,提高了808 nm波长激光器的温度。进一步的体内和体外研究将需要优化Ti 3 C 2纳米片的光热特性。
Michalis Stavrou,* Benjamin Chacon,Maria Farsari,Anna Maria Pappa,Lucia Gemma Delogu,Yury Gogotsi,*和David Gray*
图2:(a)摩擦行为的系数显示MOS 2 -TI 3 C 2 t X固体润滑剂涂层在各种接触载荷下以0.1 m/s的单向滑动,作为干氮的滑动距离的函数。(b)稳态摩擦值与钢对钢,MOS 2-steel和ti 3 C 2 t x X-On-Steel引用并置。(c)在环境条件下在20 N和0.1 m/s下测量的摩擦系数与在干燥的氮条件下的摩擦相反,显示了湿度对摩擦学性能的影响。(d)钢基材上的涂料磨损是在相同距离滑动后正常负载的函数。摩擦被观察到随着正常载荷(接触压力)的增加而减小的,20 N测试条件超过了超级润滑性阈值的数量级(0.0034)。磨损率随着摩擦等负载的增加而降低。
Xin Liu 1,2 , Alei Dang 1,2 *, Tiehu Li 1,2 *, Yiting Sun 1,2 , Weibin Deng 1,2 , Tung-Chun Lee 3 , Yong Yang 1 ,
THz波段。具体而言,理想的阻抗匹配情况预测吸收效率的上限为50%,其中吸收体的方块电阻是自由空间阻抗的一半(Zo/2)[2]。此外,实现整个THz波段有效带宽覆盖的一个基本标准是自由电子的弛豫时间小于15fs。尽管如此,有证据表明,基于金属、石墨烯和拓扑绝缘体开发的吸收体通常仅在较窄的THz波段范围内实现高吸收,而不是在整个所需带宽内。因此,当前的研究人员在经典直流阻抗匹配模型的指导下,集中精力筛选广泛的候选材料,以解决THz波段有效吸收较窄这一长期存在的问题。
1. 简介在电解装置中,由于 OER 位点不活跃以及材料电导率低,催化剂层会导致电解器整体运行中的损耗。[1,2] 为了实现下一代廉价 OER 电解器催化剂,催化剂本身必须具有导电性,在工作条件下具有机械和化学稳定性,具有较高的电化学表面积,并含有高浓度的活性位点以释放 O 2 。迄今为止,质子交换膜 (PEM) 和碱性阴离子交换膜 (AAEM) 水电解还未实现这一点。制造具有所有这些特性的催化剂的一种方法是将具有这些特性的不同材料本质上结合起来,制成一种“超级”催化剂。