2019 年 6 月 23 日至 2020 年 3 月 22 日,在 Wah Cantt 第三医院接受脑膜炎检查。材料和方法:通过非概率目的抽样,共纳入 173 名患者。我们的研究纳入了年龄在 2 至 70 岁之间、性别不限且根据临床表现疑似患有脑膜炎的患者。本研究排除了禁用增强 MRI 和腰椎穿刺的患者、确诊为脑膜炎的患者和不同意接受检查的患者。所有患者均以 0.2 毫升/秒的速度接受静脉注射造影剂钆。钆后 T1W 和钆后 FLAIR 图像由顾问放射科医生获取和评估。将发现记录在规定的表格上。对患者进行随访并从实验室收集腰椎穿刺结果。结果:平均年龄为 26.4±23.5 岁,范围从 2 岁至 70 岁。 173 名患者中,98 名(56.6%)为男性,75 名(43.4%)为女性。临床表现如下:喂养不良、易怒和嗜睡 86 人(49.7%),头痛 137 人(79.2%),恶心/呕吐 125 人(72.3%),颈部僵硬 89 人(51.4%),意识水平改变 132 人(76.3%),癫痫发作 78 人(45.1%)和局部神经功能障碍 45 人(26%)。以腰椎穿刺金标准为诊断标准,增强 MRI FLAIR 诊断脑膜炎的灵敏度为 91%,特异性为 85%,PPV 为 87.6%,NPV 为 89.4%,诊断准确率为 88.4%。以腰椎穿刺金标准为标准,增强 MRI T1W 在脑膜炎诊断中的诊断准确率显示敏感性 60.2%、特异性 77.5%、PPV 75.6%、NPV 62.6% 和诊断准确率 68.2%。结论:与增强 T1W 序列相比,增强 FLAIR 序列在检测脑膜增强方面具有更高的敏感性和特异性。因此,对于所有怀疑患有脑膜炎的患者,应将增强 FLAIR 序列作为常规序列添加到 MRI 脑部方案中。
[1] Siegmund 等人。通过功能性磁共振成像理解源代码。(2014 年)。[2] Huang 等人。使用 fMRI 和 fNIRS 提取数据结构操作的神经表征。(2019 年)。[3] Peitek 等人。程序理解和代码复杂度指标:一项 fMRI 研究。(2021 年)。[4] Krueger 等人。神经鸿沟:一项关于散文和代码写作的 fMRI 研究。(2020 年)
应用。 [3] 然而,尽管取得了这些进展,这些执行器要实现大输出力和高重量标准化工作能力(以下称为“工作能力”)仍然具有挑战性。 [4] 这是因为组成材料较软且体积有限,难以储存和释放高机械能。 [2d,5] 目前,大多数微型软执行器的工作能力相对较低,在 10 –3 至 10 2 J kg − 1 范围内(图 S1,支持信息),[3b,6] 这使得它们无法用于潜在的医疗器械、操作和其他需要高工作能力的应用。 [7] 此外,现有磁控软执行器的最大输出力约为 60 µN。然而,许多医疗程序,如支架植入术 [8] 要求装置的输出力超过 1 N,这约为磁控软执行器最大输出力的 10软气动执行器同时提供了高机械性能和柔顺性,使其在强力操控中得到了广泛的应用。[9] 具体而言,尽管杨氏模量较小(约为 10 kPa),但这些执行器可以提供高工作能力(9 J g-1),比大多数已报道的执行器的性能高出约 10 1 –10 3 倍。尽管形状记忆合金具有类似的工作能力,但它是执行器的 10 6 倍
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
无线驱动和远程控制的活跃软材料已引起了大量的研究注意,因为与传统的智能材料相比,它们在各种各样的领域中具有潜在的潜在应用,其性能有所改善。[1-5]这些合成伴侣对环境刺激的反应并表现出模仿或与自然界观察到的行为或现象相匹配的能力。[6-8]在这些智能材料中,机械刺激响应材料从环境输入中收获能量,例如光线,[9-11]热量,[12,13]溶剂,[14,15]和物理领域和[16-18],并将其转换为机械能量,无需通过机械形状,无需通过板上的功率来源。这些无线材料可以完成各种功能,例如运动[19-21]以及物体操纵和运输[22-24]作为执行器和传感器。在迄今为止报道的大量活跃智能材料中,由于它们的独特特征和独特的优点,液晶弹性体(LCE)和磁反应弹性体(MRE)最近与其他人脱颖而出。lces表现出大量的菌株(高达400%)和高度工作,以响应多种环境刺激,例如温度[25-27]光,[11,28]和电场。[17,18,29] LCES内部元素的预定对齐(由导演n描述)启用了已在软执行器和生物启发的设备中使用的复杂的3D可逆形状。这些局部菌株共同起作用,以实现指定的形状 - 修复行为,这通常是平面外弯曲的。[6,11,30]外部刺激会根据LCES的当地董事场诱导收缩和拉伸菌株的对齐中的订单参数。另一方面,MRE由柔软的弹性体(SE)矩阵组成,其嵌入式硬磁性微或纳米果(MMPS或MNP)组成。外部磁场在嵌入的MMP或MNP上产生局部力和扭矩。分离的扭矩会导致身体变形和MRE材料的净旋转,而颗粒所经历的力会融合到净力,从而置换MRE或变形。[31]磁性致动具有远距离,健壮和快速致动的优势,并且瞬间的能力
我们提出了一种新颖的神经可变形模型 (NDM),旨在从二维稀疏心脏磁共振 (CMR) 成像数据中重建和建模心脏的三维双心室形状。我们使用混合可变形超二次曲面对双心室形状进行建模,该超二次曲面由一组几何参数函数参数化,能够进行全局和局部变形。虽然全局几何参数函数和变形可以从视觉数据中捕捉到总体形状特征,但可以学习局部变形(参数化为神经微分同胚点流)来恢复详细的心脏形状。与传统可变形模型公式中使用的迭代优化方法不同,可以训练 NDM 来学习此类几何参数函数、来自形状分布流形的全局和局部变形。我们的 NDM 可以学习以任意尺度加密稀疏心脏点云并自动生成高质量的三角网格。它还可以隐式学习不同心脏形状实例之间的密集对应关系,以实现准确的心脏形状配准。此外,NDM 的参数直观,医生无需复杂的后处理即可使用。大型 CMR 数据集上的实验结果表明,NDM 的性能优于传统方法。
量子异常霍尔效应在凝结物理和计量学中具有颠覆性创新,因为它可以根据von-klitzing常数r k = h/e 2在零外部磁场上访问霍尔电阻量化。在这项工作中,我们研究了基于磁性拓扑绝缘体材料(V,BI,SB)2 TE 3的设备中霍尔电阻量化的准确性。We show that the relative deviation of the Hall resistance from R K at zero external magnetic field is (4.4 ± 8.7) nΩ/Ω when extrapolated to zero measurement current, and (8.6 ± 6.7) nΩ/Ω when extrapolated to zero longitudinal resistivity (each with combined standard uncertainty, k = 1), which sets a new benchmark for the quantization accuracy in topological matter.在NΩ/ω水平(或相对不确定性的10 -9)处的这种精度和准确性达到了相关的计量应用的阈值,并建立了零外部磁场量子量子标准电阻标准 - 朝着将量子基于量子的电压和电阻整合到单个通用电气电气电气中的重要步骤。
1 维也纳大学物理学院,A-1090 维也纳,奥地利 2 国家标准与技术研究所,美国科罗拉多州博尔德 80305 3 科罗拉多州立大学物理系,美国科罗拉多州柯林斯堡 80523 4 维也纳大学 MMM 数学-磁性-材料研究平台,奥地利维也纳 1090 5 imec,比利时鲁汶 3001 6 杜伦大学物理系,英国杜伦 DH1 3LE 7 哥德堡大学物理系,瑞典哥德堡 412 96 8 马德里自治大学 Nicolás Cabrera 研究所 (INC) 和凝聚态物理研究所 (IFIMAC) 凝聚态物理系 C-III,西班牙马德里 9 法国国家研究中心巴黎萨克雷泰雷兹大学法国国家科学研究院,91767 帕莱索,法国 10 慕尼黑工业大学物理系,85748 加兴,德国 11 SN Bose 国家基础科学中心凝聚态物理与材料科学系,加尔各答 700106,印度 12 日本东北大学材料先进研究所,仙台 980-8577,日本 13 格罗宁根大学泽尔尼克先进材料研究所,9712 CP 格罗宁根,荷兰 14 慕尼黑工业大学电气与计算机工程系,80333 慕尼黑,德国
应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。