摘要:由于其在电子,可穿戴技术和航空航天行业中的应用,对高效和轻量级热材料的需求飙升。传统材料包含重量,稀有和/或有毒元素,使其对未来不可持续。这项工作提出了MGB 4的研究,MGB 4尚未研究为热电材料。我们使用先进的计算化学技术,结合了电子结构计算,晶格动力学和完全缺陷化学分析,以预测理论P-TYPE和N型系统中的一系列载体浓度和温度。研究表明,在高温条件下,P-型MGB 4可与先前发现的基于MG的热电学相媲美,ZT在1200 K时为0.47。我们还表明,将BA合金高达10%是提高热电性能的可能途径,因为它增加了ZT至0.66。■引入多达50%的能源以热的形式浪费,其中大多数来自燃烧等工业过程。1
摘要 - 超导纳米电视单光子探测器(SNSPDS)的可伸缩性,可重复性和操作温度一直是自设备首次提出以来的主要研究目标。最近将氦离子辐照作为SNSPD的后处理技术的创新可以使高检测效率更容易复制,但仍然知之甚少。此外,从高-T C材料中以微米范围的尺度制造探测器可以分别提高可伸缩性和工作温度。同时,在宽电线和诸如Diboride镁之类的更高T材料中制造成功的设备已被证明已被证明。在这项工作中,我们比较了硝酸氮化物和二吡啶镁探测器中的氦离子辐照,并与不同的材料堆栈进行了比较,以便更好地了解辐照的机制以及在有效剂量上封装层的实际意义。我们检查了实验有效剂量测试的效果,并将这些结果与相应材料堆栈中模拟预测的损伤进行了比较。在两种材料中,辐照都会导致计数率的提高,尽管对于硝酸盐而言,即使在测试最高的剂量为2的最高剂量下,这种增加也没有完全饱和。6×10 17离子/cm 2,而对于抗封闭的二氨基镁,即使是测试的最低剂量为1×10 15离子/cm 2的最低剂量似乎高于最佳。我们的结果证明了氦离子辐照到截然不同的设备和材料堆栈中的一般适用性,尽管具有不同的最佳剂量,并显示了这种后加工技术在显着提高SNSPD效率方面的可重复性和有效性。
我们报告了使用新制造方法生产的单核MGB 2 /Fe线的传输,机电和结构特性,称为设计IMD工艺,该方法依赖于使用非校准MG + B颗粒,并代替过量MG代替标准内部MG扩散(IMD)方法中的中央MG杆。结构分析揭示了中心中多孔MGB 2结构的成功形成,并在设计的IMD线中围绕该结构的密集圆形MGB 2层。快速运输I - V测量结果表明,设计的IMD方法提高了工程临界电流密度(J E),最大是自场中IMD电线的两倍。中央多孔MGB 2结构共享了应用的电流,并间接表现为在高施加电流下对淬火损伤的内部稳定剂。
三个主要部分〜10 m。第一部分是带有VSI的绝缘低温恒温器“管道中的管道” - 那些低温恒温器与2011年一样,第二部分是由带钢筋的瓦楞纸制成的柔性低温恒温器。主动蒸发低温静态系统。的LH 2流量 - 正在辅助通道,并泵出较低的压力,因此,为了降低温度,第三部分也是具有液氮屏蔽层作为绝缘的柔性低温恒温器。