利用 microLED 显示技术解决芯片间数据通信瓶颈 Bardia Pezeshki AvicenaTech Corp.,1130 Independence Ave,Mountain View,CA94043,www.avicena.tech 关键词:MicroLED、多芯光纤、光互连 摘要 在硅 IC 上制造的 MicroLED 显示器可以以空间复用格式形成高度并行的数据链路。如此宽的低功耗数据总线可以解决 4000 亿美元 IC 行业最大的痛点之一。我们展示了转移到硅 CMOS 电路上的高速 microLED,其中包括 LED 的集成驱动器、集成 Si 探测器和放大器。这些芯片的运行速度达到 Gb/s,可以与多芯光纤连接,在标准硅 ASIC 之间建立简单的低成本数据路径。我们使用 130nm CMOS 工艺展示了这些链路,每比特 <2pJ,并在 BER 和模式分割噪声方面展示了它们与 FP 激光器相比的卓越性能。 介绍
尽管与近红外光通信中使用的光子器件相比,GaN microLED 器件的射频带宽相对较小,但它们能够缩小到 1 μ m 到 10 μ m 之间的非常小的间距,并且具有高亮度和在高温下工作的能力,这使它们成为短距离光通信的有趣器件。人工智能 (AI) 或高性能计算 (HPC) 等应用正在推动更高性能、更好能源效率和低延迟短距离互连的发展。事实上,据报道,15 AI 开发所需的硬件性能的扩展速度远远快于互连和内存数据速率。因此,芯片间或芯片内通信预计将成为 AI 技术进步的主要限制因素,这加强了人们对 GaN microLED 等新型短距离光互连的兴趣。我们介绍了 CEA-LETI 最近开展的工作,重点是开发短距离芯片到芯片光通信,如图 1 所示,使用 InGaN/GaN microLED 和微型光电二极管 (microPD)。这项工作利用了最初为微型显示器开发并适用于 200 毫米 ASIC 的外延、器件和集成工艺。在概述 microLED 在通信方面的预期优势并将其与替代技术进行比较后,我们将简要介绍一种集成工艺,该工艺旨在在控制 ASIC 上方组装密集的 microLED 矩阵。将重点介绍主要的性能指标,以评估
MicroLED 代表着一个令人兴奋的机会,有可能降低超大面积显示器以及一些小面积显示器应用的成本。高能量紫外激光器是降低生产成本、提高产量和改善质量的关键。Coherent 提供多种解决方案,从单一激光源、光学系统到集成系统,用于 MicroLED 制造中的三个重要过程:激光剥离 (LLO)、激光诱导正向转移 (LIFT) 和修复/修整。Coherent 还涵盖了整个 MicroLED 生产链的更多工艺步骤,从超短脉冲激光器的激光切割到二极管激光器的激光辅助键合 (LAB)。
您可在 1 月 7 日至 10 日于拉斯维加斯会展中心 (LVCC) 中央大厅 16625 展位举行的 CES 2025 上观看海信的 136MX MicroLED。
摘要:我们提出了一种由二氧化钛 (TiO 2 ) 亚波长光栅制成的双谐振纳米结构,以提高 Cd x Zn 1 − x Se y S 1 − y 胶体量子点 (QDs) 在用 ∼ 460 nm 的蓝光激发时发射波长为 ∼ 530 nm 的颜色下转换效率。通过光栅谐振和波导模式的混合,可以在 QD 层内创建大的模式体积,从而导致大的吸收和发射增强。特别是,我们实现了偏振光发射,在特定角度方向上最大光致发光增强约 140 倍,在收集物镜的 0.55 数值孔径 (NA) 内总增强约 34 倍。增强包括吸收、Purcell 和外耦合增强。我们实现了绿色 QDs 的总吸收率为 35%,颜色转换层非常薄,约为 ∼ 400 nm。这项工作为设计用于微型 LED 显示器、探测器或光伏应用中的吸收/荧光增强的大体积腔体提供了指导。关键词:导模共振、二氧化钛、介电纳米天线、颜色转换、胶体量子点、微型 LED 显示器
• Alpha Sapphire B 阶段 FID 有望于 2025 年中期实现:A4N 将从现有的两个合成蓝宝石生长单元扩展到新工厂的 50 个单元(B 阶段扩建)的计划有望于 2025 年中期实现 FID。工程和成本建模正在进行中。A4N 最近将 B 阶段的 FID 推迟了大约六个月。该公司已经收到半导体制造商对下一代氮化镓 (GaN) 蓝宝石半导体平台的需求。这个新兴市场在一定程度上抵消了 microLED 显示器行业需求增长低于预期的影响。QIC 关键矿产和电池技术基金 (QCMBTF) 下的 B 阶段融资(3000 万美元)条款已更新,资金现在将可用至 2025 年 9 月 30 日,但前提是 Alpha Sapphire 董事会在 2025 年 6 月 30 日之前达成 FID。
此外,周二还将举行为期半天的异构集成路线图研讨会,由 Bill Chen 和 Bill Bottoms 主持。ECTC 还将邀请行业专家举办 7 场特别会议,讨论几个重要且新兴的主题领域。周二将安排 5 场特别会议,每场 90 分钟。5 月 31 日星期二上午 8:30,Chukwudi Okoro 和 Benson Chan 将主持“MicroLED 显示技术:大批量制造 (HVM) 进展与挑战”会议,随后 Amr Helmy 将于上午 10:30 主持特别会议,主题为“IEEE EPS 异构集成路线图的选定主题”。周二下午 1:30,Jan Vardaman 将就“从芯片到共封装光学器件”这一主题发表特别演讲,随后 Kuldip Johal 和 Bora Baloglu 将在下午 3:30 发表特别演讲,题为“IC 基板技术将如何发展以实现下一代异构集成方案以实现高性能应用?”周二晚上,Kitty Pearsall 和 Chris Riso 将共同主持 EPS 总裁 ECTC 小组会议,主题为“最先进的异构集成封装方案”。
基本上,微滤线的微型播放主要由μLED阵列和电子零件组成,这些阵列和电子零件可电动驱动单个μLED。当前,使用两种主要方法来整合μLED阵列和电子零件。第一种方法是基于大规模转移技术的所谓“选择”,这意味着数百万的LED从晶圆转移到晶体管背板,在晶体管背板中,非常高的精度约为1 µm,需要大量时间。结果,产率通常非常低,[13-16],因此这种方法对于制造微型播放是不切实际的,尤其是对于AR/VR应用。第二种方法是基于翻转芯片键合技术,其中μLED和CMO(用于电动驱动单个μLED)分别制造,然后将其合并晶片键合在一起。[17]但是,值得强调的是,第二种方法面临着两个主要的挑战。第一个挑战是由于组装问题。由于需要通过CMOS CUIT来驱动单独的可寻址LED,因此采用了一种异质的集成方法,用于与电动驱动零件的CombineμLED。[4,8–13]在这种情况下,仍然存在μLED和CMO之间对齐的准确性问题,因此仍然限制了转移产量,然后增加了制造成本。第二个挑战是由于μLED的光学性能降解,其中μLED是通过光刻技术和随后的干蚀刻过程制造的。[4-11]在这种干蚀刻和随访过程中,引入了严重的损坏,导致μED的光学效果严重降解。[18,19]此外,随着降低LED的尺寸,问题的严重程度进一步增强。[18-22]尽管采用了使用原子层沉积(ALD)技术的额外钝化过程,但[22,23]由于在干etter蚀过程中造成的不可逆损害,光学性能的恢复是微不足道的。因此,用于制造微型播放的这种杂基整合方法仍然远非令人满意。我们认为,电气驱动的LED和高电子迁移式晶体管(HEMT)的外延整合