摘要:在许多领域,诸如安全监视,夜间自动驾驶,荒野救援和环境监测等许多领域的急需需求都有急需的需求。SPAD设备的出色性能为它们在低光成像中的应用中带来了巨大的潜力。本文介绍了专为低光成像设计的64(行)×128(列)SPAD图像传感器。芯片利用了三维堆叠结构和微卷技术,再加上紧凑的门控像素电路,设计了厚山墙MOS晶体管,从而进一步增强了Spad的光敏性。可配置的数字控制电路允许调整曝光时间,从而使传感器适应不同的照明条件。芯片表现出非常低的黑噪声水平,平均DCR为41.5 cps,在2.4 V多余的偏置电压下。此外,它采用了专门为SPAD图像传感器开发的脱氧算法,在6×10 - 4 Lux照明条件下实现了两维灰度成像,表现出出色的低光成像功能。本文设计的芯片充分利用了SPAD图像传感器的性能优势,并且对需要低光成像功能的各个领域的应用有望。
基于我们在去年所证明的成功的单光子3D光场光刻学,我们将方法扩展到了飞秒3D光场光刻。与我们以前的单光子与紫外线LED光的工作相比,使用飞秒光和3D光场光刻中相关的两光子光吸收可以仅在3D空间中设计的Voxel位置周围固化光线剂。这样的两光子方案可以防止在到达设计的体素位置之前,在我们以前的基于UV LED LED的单光子3D灯场光谱术中观察到,在到达设计的体素位置之前,光孔物的光孔疗法固化。飞秒两杆3D光场光刻的实验方案从将均匀的飞秒激光脉冲传递到空间光调节器开始。设计的像素映射显示在空间灯调制器上,然后传递到Microlens阵列中以在自由空间中构造3D虚拟图像。通过使用显微镜系统在光构仪层中压缩3D虚拟图像,我们可以成功生成不同的显微镜3D模式,而无需像传统的3D光刻一样依赖扫描过程。在这项研究中,我们介绍了(a)为使用飞秒光的3D模式开发的(a)算法的初步结果,当使用飞秒光线时,该算法应满足其他约束,并且((b)具有fletoResists生成的3D模式,具有flemtosecond femtsecond thepsocond Photon 3D 3D Light Field Field Field Figh Figh Figh Figh Figh Field Littionshophation。
实验物理学的科学进步不可避免地依赖于基础技术的不断进步。激光技术可以实现受控的相干和耗散原子光相互作用,而微光学技术则可以实现标准光学无法实现的多功能光学系统。本论文报告了这两项技术的重要进展,目标应用范围从里德堡态介导的量子模拟和光镊阵列中单个原子的计算到高电荷离子的高分辨率光谱。报告了激光技术的广泛进展:通过引入机械可调透镜支架,外腔二极管激光系统的长期稳定性和可维护性得到显著改善。开发了基于类似透镜支架的锥形放大器模块。二极管激光系统由数字控制器补充,用于稳定激光频率和强度。控制器提供高达 1.25 MHz 的带宽和由商业 STEMlab 平台设定的噪声性能。此外,还开发了针对强度稳定和 Pound-Drever-Hall 频率稳定进行优化的散粒噪声受限光电探测器以及用于 MHz 范围拍音的光纤探测器。通过分析用于波长为 780 nm 的 85 Rb 激光冷却的激光系统的性能,证明了所提出技术的能力。参考激光系统稳定到由调制传输光谱提供的光谱参考。分析该光谱方案以发现高调制指数下的最佳操作。使用紧凑且经济高效的模块产生合适的信号。实现了一种基于光学锁相环的激光偏移频率稳定方案。来自参考激光系统的所有频率锁定均提供 60 kHz(FWHM)的 Lorentzian 线宽以及 10 天内 130 kHz 峰峰值的长期稳定性。基于声光调制器与数字控制器相结合的强度稳定允许在微秒时间尺度上进行实时强度控制,并辅以响应时间为 150 纳秒的采样保持功能。对激光系统的光谱特性提出了很高的要求,以实现量子态的相干激发。在本论文中,通过引入一种用于二极管激光器的新型电流调制技术来增强主动频率稳定的性能。实现了从 DC 到 100 MHz 的平坦响应和低于 90 ◦ 的相位滞后,最高可达 25 MHz,从而扩展了可用于激光频率稳定的带宽。将该技术与快速比例微分控制器相结合,实现了两个激光场,相对相位噪声为 42 mrad rms,用于驱动铷基态跃迁。通过双光子方案进行相干里德堡激发的激光系统通过从 960 nm 倍频提供 780 nm 和 480 nm 的光。从单模光纤获得的 480 nm 输出功率为 0.6 W。两个激光系统的频率都稳定在高精细度参考腔中,导致 960 nm 处的线宽为 1.02 kHz(FWHM)。数值模拟量化了有限线宽对里德堡拉比振荡相干性的影响。开发了一种类似于 480 nm 里德堡系统的激光系统,用于高电荷铋的光谱分析。先进的光学技术也是微光学镊子阵列的核心,它提供了前所未有的系统尺寸可扩展性。通过使用优化的透镜系统与自动评估程序相结合,演示了具有数千个点且阱腰小于 1 µm 的镊子阵列。使用增材制造工艺生产的微透镜阵列实现了类似的性能。微透镜设计针对制造工艺进行了优化。此外,还分析了由于抑制谐振光导致的偶极阱散射率,证明了使用锥形放大器系统生成偶极阱的可行性。
†ZL和BJ对这项工作也同样贡献。10 *信函作者:11 Mei X. Wu博士:mwu5@mgh.harvard.edu 12 13摘要:14个血液抽血或使用针的血液术在诊所实践了几个世纪,而15个通常会导致疼痛,不适和不便。在此,我们通过整合Microlens阵列(MLA)和光学微针阵列(OMNA)来创建一个可穿戴的光子设备16,具有17个免疫识别能力,以实现安全且无针的生物标志物采样和检测。MLA-18在595 nm处通过Omna进入皮肤的LED光的综合OMNA,19绕过表皮层中的光吸收黑色素,并均匀地分布在毛细血管20富含20的毛细管中。595 nm的光优选地被21毛细血管内的血红蛋白(Hb)和氧-Hb吸收,从而触发毛细血管的热扩张而不会损害它们或引起Petechiae。22光照明导致皮肤中各种血液23生物标志物的浓度显着增加,这由于毛细血管扩张和生物标志物的渗出。这些奢侈的24个生物标记物专门与OMNA结合,该标志物用捕获抗体共价装饰,每只25个微针与一种特定的抗体固定。多功能OMNA进行了广泛的26修改,以扩大免疫联系信号并获得优于酶-27连接的免疫吸附测定法(ELISA)试剂盒的灵敏度。这种经济高效的30设备为血液生物标志物的无血,多重检测提供了一个有希望的平台。31 32 33 34 35 36 37 38 39 40 41 42作为概念证明,我们验证了28个原型的功能,用于微创采样和精确的多重血液生物标志物检测,以量化急性炎症和特定的抗体产生。
2.2 物联网智能显示技术 周良、张玲玲、周久斌、刘金娥、秦峰,上海天马微电子股份有限公司,上海,中国 2.3 集成多屏驱动器的显示模块 周良、姚璐、张玲玲、周久斌、杜万春、刘金娥、秦峰,天马微电子集团,上海,中国 2.4 自由曲面和曲面显示器的高精度光学贴合 Eugen Bilcai,汉高集团,美国密歇根州麦迪逊高地 2.5 汽车外饰显示器的数字化造型和安全性 Johnathan Weiser、Richard Nguyen、Kimberly Peiler,欧司朗光电半导体公司,美国密歇根州诺维 Ulrich Kizak,欧司朗光电半导体公司,德国雷根斯堡 2.6 传感应用中高质量 SNR 的新方法 Gerald Morrison,SigmaSense,美国德克萨斯州奥斯汀 第三场:平视显示器 联合主席: Ross Maunders,FCA US LLC,美国密歇根州奥本山 Dan Cashen,大陆汽车集团,美国密歇根州奥本山 3.1 用于平视显示器应用的漫射微透镜阵列 Naoki Hanashima、Mitsuo Arima、Yutaka Nakazawa,迪睿合株式会社,日本宫城县多贺城市 Kazuyuki Shibuya,迪睿合株式会社,日本宫城县登米市 Jingting Wu,迪睿合美国公司;美国加利福尼亚州圣何塞 3.2 人类对平视显示器重影的感知研究 Steve Pankratz、William Diepholz、John Vanderlofske,3M 公司,美国明尼苏达州圣保罗 3.3 使用自由曲面光学元件的 3D AR HUD 计算全息显示器 Hakan Urey,CY Vision,美国加利福尼亚州圣何塞
图 3.1:手势识别图 ................................................................................................................ 45 图 3.2:ZTM 手套。 .......................................................................................................................... 46 图 3.3:带有多个传感器的 MIT Acceleglove。 ...................................................................................... 47 图 3.4:CyberGlove III .................................................................................................................... 48 图 3.5:CyberGlove II。 .................................................................................................................... 48 图 3.6:5DT 动作捕捉手套和传感器手套 Ultra。 左:当前版本,右:旧版本。[73][74]。 ............................................................................................................................. 49 图 3.7:X-IST 数据手套 ............................................................................................................. 50 图 3.8:P5 手套。 ........................................................................................................................... 50 图 3.9:典型的基于计算机视觉的手势识别方法 .......................................................................... 51 图 3.10:手势识别中使用的相机类型 .......................................................................................... 52 图 3.11:立体相机。 ...................................................................................................................... 52 图 3.12:深度感知相机 ...................................................................................................................... 53 图 3.13:热像仪 ...................................................................................................................... 53 图 3.14:基于控制器的手势 ............................................................................................................. 54 图 3.15:单相机。 ............................................................................................................................. 54 图 3.16:布鲁内尔大学 3DVJVANT 项目的全息 3D 相机原型...................................................... 55 图 3.17:3D 积分成像相机 PL:定焦镜头,MLA:微透镜阵列,RL:中继透镜。 ... 55 图 3.18:方形光圈 2 型相机与佳能 5.6k 传感器的集成。 ................................................ 56 图 5.1:不同的手势。 ...................................................................................................................... 70 图 5.2:系统实现的图解框架。 ............................................................................................. 71 图 5.3:使用 WT 的 10 种不同运动的 IMF。 ............................................................................. 75 图 5.4:使用 EMD 的 10 种不同运动的 IMF。 ........................................................................... 76 图 5.5:WT 中 10 个不同类别的 ROC。 ......................................................................................... 79 图 5.6:EMD 中 10 个不同类别的 ROC。 ......................................................................................... 80 图 5.7:研究中使用的手势。 ......................................................................................................... 84 图 5.8:实施框架。 ........................................................................................................... 84 图 5.9:使用 WT 的 10 种不同动作的 IMF。 ........................................................................... 87 图 5.10:使用 EMD 的 10 种不同动作的 IMF。 ........................................................................... 89 图 5.11:WT 中 10 个不同类别的 ROC。 ......................................................................................... 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。 .............................................................................. 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。 .............................................................................. 91 图 5.12:EMD 中 10 个不同类别的 ROC。 ........................................................................................... 92 图 6.1:拔牙前第一人称短距离手部动作 .............................................................................. 97 图 6.2:拔牙后第一人称短距离手部动作 .............................................................................. 99 图 6.3:拔牙后第一人称短距离手部动作 ............................................................................. 100 图 6.4:拔牙前第二人称短距离手部动作 ............................................................................. 101 图 6.5:拔牙后第二人称短距离单人手部动作(LCR) ............................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................. 105 图 6.8:拔牙后第三人称短距离单人手部动作(LCR) ............................................................................................................................................................. 107
图 3.1:手势识别图 ................................................................................................................ 45 图 3.2:ZTM 手套。................................................................................................................. 46 图 3.3:带有多个传感器的 MIT Acceleglove。...................................................................................... 47 图 3.4:CyberGlove III .................................................................................................................... 48 图 3.5:CyberGlove II。.................................................................................................................... 48 图 3.6:5DT 动作捕捉手套和 Sensor Glove Ultra。左:当前版本,右:旧版本。[73][74].................................................................................................................................. 49 图 3.7:X-IST 数据手套 ................................................................................................................ 50 图 3.8:P5 手套。................................................................................................................................. 50 图 3.9:典型的基于计算机视觉的手势识别方法 ............................................................. 51 图 3.10:手势识别中使用的相机类型 ............................................................................. 52 图 3.11:立体相机。................................................................................................................. 52 图 3.12:深度感知相机 ............................................................................................................. 53 图 3.13:热像仪 ................................................................................................................ 53 图 3.14:基于控制器的手势 ................................................................................................ 54 图 3.15:单个相机。................................................................................................................ 54 图 3.16:布鲁内尔大学 3DVJVANT 项目的全息 3D 相机原型。 ........... 55 图 3.17:3D 集成成像相机 PL:定焦镜头,MLA:微透镜阵列,RL:中继透镜。... 55 图 3.18:方形光圈 2 型相机与佳能 5.6k 传感器集成。................................ 56 图 5.1:不同的手势。................................................................................................ 70 图 5.2:系统实施框架说明。.............................................................................. 71 图 5.3:使用 WT 的 10 种不同运动的 IMF。.............................................................................. 75 图 5.4:使用 EMD 的 10 种不同运动的 IMF。......................................................................... 76 图 5.5:WT 中 10 个不同类别的 ROC。................................................................................ 79 图 5.6:EMD 中 10 个不同类别的 ROC。........................................................................... 80 图 5.7:研究中使用的手势。................................................................................ 84 图 5.8:实施框架。................................................................................................ 84 图 5.9:使用 WT 的 10 种不同运动的 IMF。................................................................................ 87 图 5.10:使用 EMD 的 10 种不同运动的 IMF。................................................................................ 89 图 5.11:WT 中 10 个不同类别的 ROC。................................................................................ 91 图 5.12:EMD 中 10 个不同类别的 ROC。................................................................................ 92 图 6.1:拔牙前第一人称短距离手部动作 ........................................................................ 97 图 6.2:拔牙后第一人称短距离手部动作 ........................................................................ 99 图 6.3:拔牙后第一人称短距离手部动作 ........................................................................ 100 图 6.4:拔牙前第二人称短距离手部动作 ........................................................................ 101 图 6.5:拔牙后第二人称短距离单次手部动作(LCR) ............................................................................................................................. 103 图 6.6:拔牙后第二人称短距离组合手部动作(LCR) ............................................................................................................................................. 105 图 6.7:拔牙前第三人称短距离手部动作 ............................................................................................................................. 105 图 6.8:拔牙后第三人称短距离单次手部动作(LCR) ............................................................................................................................................................. 107