目前,人们正在研究具有光控的固态杂质自旋,以用于量子网络和中继器。其中,稀土离子掺杂晶体有望成为光的量子存储器,具有潜在的长存储时间、高多模容量和高带宽。然而,对于自旋,通常需要在带宽(有利于电子自旋)和存储时间(有利于核自旋)之间进行权衡。这里,我们展示了使用 171 Yb 3 + ∶ Y 2 SiO 5 中高度杂化的电子-核超精细态进行的光存储实验,其中杂化可以同时提供长存储时间和高带宽。我们达到了 1.2 毫秒的存储时间和 10 MHz 的光存储带宽,目前仅受光控制脉冲的 Rabi 频率限制。在此原理验证演示中的存储效率约为 3%。该实验是首次使用具有电子自旋的任何稀土离子的自旋态进行光存储。这些结果为具有高带宽、长存储时间和高多模容量的稀土基量子存储器铺平了道路,这是量子中继器的关键资源。
我们设计了一种通过相空间分布相关性来认证非经典特征的方法,该方法统一了准概率和相关函数矩阵的概念。我们的方法补充并扩展了基于切比雪夫积分不等式的最新结果 [Phys. Rev. Lett. 124, 133601 (2020)]。这里开发的方法在相空间中的任意点关联任意相空间函数,包括多模场景和高阶相关性。此外,我们的方法提供了必要和充分的非经典性标准,适用于 s 参数化函数以外的相空间函数,并且可以在实验中使用。为了证明我们技术的强大功能,我们仅使用二阶相关和 Husimi 函数来验证离散和连续变量、单模和多模以及纯态和混合态的量子特性,这些函数始终类似于经典概率分布。此外,我们还研究了我们方法的非线性推广。因此,我们设计了一个通用且广泛适用的框架,以揭示相空间分布矩阵中的量子特性。
几十年前,量子光学元件通过表现出没有经典等效的光线而成为物理的新领域。第一次研究涉及仅涉及一种或两种模式的电磁场的单个修饰,挤压状态,双束和EPR状态。然后,量子光的性质的研究沿越来越复杂和丰富的情况的方向发展,涉及许多空间,时间,频率或极化模式。实际上,电磁场的每种模式都可以视为单个量子的自由度。然后,使用非线性光学器件的技术进行逐步不同的模式,从而以受控的方式构建量子网络(Kimble,2008),其中节点是光学模式,并且赋予了强大的多部分纠缠。此外,此类网络可以很容易地重新发现,并且仅受到弱分解。他们确实打开了许多有前途的光学通信和计算观点。由于麦克斯韦方程的线性性,两种模式的线性叠加是另一种模式。这意味着“模态叠加原理”与常规量子状态叠加原理握手。本评论的目的是表明以全球方式考虑多模量子光的这两个方面的兴趣。确实使用不同的模式集可以在不同的角度考虑相同的量子状态:一个给定的状态可以纠缠在一个基础上,以另一种分解。我们将证明存在一些属性,这些属性在选择模式的基础选择方面存在不变。我们还将提出找到描述给定多模量子状态所需的最小模式集的方法。然后,我们将展示如何产生,表征,量身定制和使用多模量子光,考虑在这种光和两光子重合的光和模态方面的损失和放大的影响。切换到量子技术的应用程序,我们将在这篇评论中表明,不仅可以找到可能改善参数估计的量子状态,而且还可以找到这些状态“实时”的最佳模式。我们将最终介绍如何使用此类量子模态网络进行基于测量的量子计算。
光力学晶体腔(OMCC)是广泛现象和应用的基本纳米结构。通常,此类OMCC中的光力相互作用仅限于单个光学模式和独特的机械模式。从这个意义上讲,消除单个模式约束(例如,通过添加更多的机械模式)应启用更复杂的物理现象,从而产生多模光学相互作用的背景。然而,仍然缺少一种以控制方式以多种机械模式产生多种机械模式的一般方法。在这项工作中,我们提出了一条途径,将多种GHz机械模式限制在与OMCC工程相似的光学耦合率(最高600 kHz)的相同光场的途径。本质上,我们在腔中心和镜像区域之间的绝热过渡中增加了单位细胞的数量(由圆形孔在其两侧的圆形孔中穿孔)。值得注意的是,我们的空腔中的机械模式位于完整的语音带隙内,这是在低温温度下实现超高机械Q因子的关键要求。使用标准的硅纳米技术在完整的语音带隙中的多模bevavior和实现的简单性使我们的OMCC对在经典和量子领域中的应用高度吸引人。
这是以下文章的同行评审版本:H. Zhang, W. Yu, J. Guo, C. Xu, Z. Ren, K. Liu, G. Yang, M. Qin, J. Huang, Z. Chen, Q. Liang, D. Shen, Z. Wu, Y. Zhang, HT Chandran, J. Hao, Y. Zhu, C.-s. Lee, X. Lu, Z. Zheng, J. Huang, G. Li, Excess PbI2 Management via Multimode Supramolecular Complex Engineering Enables High-Perovskite Solar Cells. Adv. Energy Mater. 2022, 12, 2201663,最终版本已发布于 https://doi.org/10.1002/aenm.202201663。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。未经 Wiley 明确许可或适用法律规定的法定权利,不得对本文进行增强、丰富或以其他方式将其转化为衍生作品。不得删除、隐藏或修改版权声明。本文必须链接到 Wiley 在 Wiley Online Library 上的记录版本,并且禁止第三方从 Wiley Online Library 以外的平台、服务和网站嵌入、框架或以其他方式提供本文或其页面。
高斯状态和测量值加在一起不足以成为量子计算的强大资源,因为任何高斯动力学都可以用经典方法高效模拟。然而,众所周知,任何一种非高斯资源(状态、幺正运算或测量)与高斯幺正值一起构成通用量子资源。光子数分辨 (PNR) 检测是一种易于实现的非高斯测量,已成为尝试设计非高斯状态以进行通用量子处理的常用工具。在本文中,我们考虑对零均值纯多模高斯状态的子集进行 PNR 检测,以此作为在未检测到的模式上预示目标非高斯状态的一种手段。这是因为使用压缩真空和被动线性光学系统可以轻松可扩展地制备具有零均值的高斯状态。我们计算了实际预示状态和目标状态之间的保真度上限。我们发现,当目标状态是多模相干猫基簇状态时,该保真度上限为 1/2,这对于通用量子计算来说是一种足够的资源。这证明了存在无法通过此方法产生的非高斯状态。我们的保真度上限是一个简单的表达式,仅取决于光子数基中表示的目标状态,它可以应用于其他感兴趣的非高斯状态。
航站楼区域内起飞的飞机。精密进近雷达可在所有天气条件下执行引导着陆。操作设备包括最新的显示和通信自动化设备。管制员位置配备多功能、多模式数字彩色显示器和全套通信设备,可满足所有管制员的任务要求。为支持着陆条件的变化,跑道变更由远程控制处理。移动版本将 ASR 和 PAR 天线安装在单个拖车中,外加一个全功能四位置掩体。
航站楼区域内起飞的飞机。精密进近雷达可在所有天气条件下执行引导着陆。操作设备包括最新的显示和通信自动化设备。管制员位置配备多功能、多模式数字彩色显示器和全套通信设备,可满足所有管制员的任务要求。为支持着陆条件的变化,跑道变更由远程控制处理。移动版本将 ASR 和 PAR 天线安装在单个拖车中,外加一个全功能四位置掩体。
航站楼区域内起飞的飞机。精密进近雷达可在所有天气条件下执行引导着陆。操作设备包括最新的显示和通信自动化设备。管制员位置配备多功能、多模式数字彩色显示器和全套通信设备,可满足所有管制员的任务要求。为支持着陆条件的变化,跑道变更由远程控制处理。移动版本将 ASR 和 PAR 天线安装在单个拖车中,外加一个全功能四位置掩体。