Effect of Multiphase Flow Parameters on CO 2 Sequestration in Deep Saline Aquifers Nimisha Gautam Sludge Settlement and System Performance at Manatee County's WWTP Kwabena Darko Okyere Enhanced Onsite Wastewater Treatment Systems for N removal Natchaya Luangphairin Biofilter Design and Management Impacts on Microbiome and Contaminant Degradation Edward Anica Performance, Price, and Perceptions哥斯达黎加的化粪池和堆肥厕所Maedeh yazdani arani饮用水质量评估
培训非常注重实践,学生可以使用专门的设备:燃料电池、太阳能电池板、风力涡轮机、水力涡轮机、光伏和风力发电系统的电网转换器、多相电机、集成到我们校园的微电网、或物联网模拟器和传感器平台(LoRa)。
诸如 COVID-19 之类的传染病的传播取决于病原体与流体相之间复杂的流体动力学相互作用,包括单个液滴和多相云。了解这些相互作用对于预测和控制疾病传播至关重要。这适用于人类和动物的呼气,例如咳嗽和打喷嚏,以及在各种室内和室外环境中产生微米级液滴的破裂气泡。通过探索这方面的案例研究,本研究考察了疾病传播中流体动力学的新兴领域,重点关注多相流、界面流、湍流、病原体、人流、气溶胶传播、通风和呼吸微环境。这些结果表明,增加通风率和局部通风方法可以有效降低个体之间直接呼吸空间中含有 SARS-CoV-2 的气溶胶浓度。在置换通风的房间中,无论是否有测试对象,中性和不稳定条件都能更有效地从空气中去除吸入的含有 SARS-CoV-2 的气溶胶。然而,稳定的环境可能会增加居住在密闭空间中的个人感染风险。因此,本研究的结果可为控制空气传播感染提供实用指导。
PEG(环境与地质资源过程)研究部门围绕矿物化学(湿法冶金、形态形成、沉淀、结晶)这一中心主题,在过程工程和地质过程方面开展研究,实现从纳米到千米空间尺度变化的多相和多物理模型。该部门汇集了一个由大约十名讲师研究员组成的多学科社区,他们一方面具有过程工程和结晶背景,另一方面具有地球科学背景。该部门隶属于两个 CNRS 单位,包括 Georges Friedel 实验室(UMR CNRS 5307),负责工业维度的过程工程主题。在这种环境下,待填补的职位是 SPIN 中心其他部门更广泛动态的一部分,旨在开发过程工程无机化学。尽管SPIN中心,更具体地说是PEG部门,目前汇集了与地球科学、结晶、热力学、湿法冶金和多相流有关的多项技能,并希望加强无机化学方面的实验技能,以支持该部门现有的主题:
2选修区A:力学中的高级模块8结构耐用性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9断裂力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10计算可塑性。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11冰川和冰的力学对不起。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13特殊现实简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。14个分析力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15有限元III:计算流体动力学的稳定方法。。。。。。。。。。。。。。。。。。。17空气动力学II。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19应用结构优化。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。多相流中的20个基本现象。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22个界面流的动力学。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23高级流体力学II。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24个用于计算流体动力学的高准确方法。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26机器动力学。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。流体力学中的数学方法:精确和对称方法。。。。。。。。。。。。。。。。。。。流体力学中的30种数学方法:常规和奇异扰动。。。。。。。。。。。。。。。。32多相流。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34湍流建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35纳米和微流体i。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37纳米和微流体II。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。37纳米和微流体II。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39非线性动力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41计算空气动力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43个应用动力学的数值方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44流体中传输过程的计算建模。。。。。。。。。。。。。。。。。。。。。。。。。。。。46流的数值模拟。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47流量模拟的高级方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49材料科学IV:机械性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50材料科学的微力学。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51
Perform dynamic simulation to optimize well locations and injection rates based upon CO 2 plume migration and pressure response Partner with our geomodeler on model upscaling and local grid refinement Interpret, manage Quality Control, and explain multiphase reservoir dynamics Work with team to develop, run, and interpret sensitivity analyses Contribute to data collection strategies and well optimization Collect, interpret, provide QC, and integrate subsurface reservoir data from literature and analogues into dynamic reservoir model Calibrate models and ensure that the geological properties have been appropriately distributed and scaled to meet simulation requirements Perform uncertainty analysis in facies and reservoir property distributions to understand the range of both potential injectivity and plume migration Provide technical writing support for Class VI permits including detailed description of the dynamic model inputs and results Meet with regulatory身体并为其他信息的要求提供技术支持
Harisinh是一名化学工程师,在涉及多相流的CFD建模方面具有较强的背景。目前,他正在EIT担任实验室协调员和学术人员。在教学学士学位和研究生的教学外,Harisinh最近参与了与氢能相关的教学和建模工作。在科廷大学(Curtin University)的先前职位上,他使用ANSYS Fluent并进行了试点量表实验来建模并设计了一个海底沉降罐,以验证沉降效率。
钠离子电池(SIB)的O3型层状氧化物阴极被认为是完全满足未来实际应用需求的最有前途的系统之一。然而,在多个方面的致命问题,例如空气稳定性差,不可逆的复杂多相进化,较低的骑自行车寿命和差的工业可行性限制了其商业化的发展。在这里,稳定的无共欧3型nani 0.4 cu 0.05 mg 0.05 mn 0.4 ti 0.4 ti 0.1 o 2具有大规模生产的阴极材料可以解决这些问题的实际SIB。由于多元素化学替代策略的协同贡献,这种新颖的阴极不仅显示出良好的空气稳定性和热稳定性以及简单的相位转换过程,而且还可以在半电池和全电池系统中提供出色的电池性能。同时,利用各种高级表征技术来准确破译晶体形成过程,原子排列,结构演化和固有的效果机制。令人惊讶的是,除了限制了不利的多相转化和增强空气稳定性外,精确的多元素化学替代工程还显示出固定的影响,以减轻晶格菌株的高结构可逆性,并扩大了合理的层间间隔,从而增强了NA + NA + NA + NA + DII效率,从而实现了出色的全面效果。总体而言,这项研究探讨了多元素化学替代策略的基本科学理解,并为增加商业化的实用性开辟了新的领域。