一氧化二氮(N 2 O)从废水处理厂的排放量,具有变暖的潜力为12 298倍,这是CO 2的降低,对降低其碳足迹构成了重大挑战。当前的13个缓解策略着重于限制氮化和反硝化过程中的n 2 o形成14,但忽略了微生物还原机制。这项研究研究了15种增强一氧化二氮还原酶(NOSZ)活性的潜力,以降低N 2 O至N 2。我们假设16个战略氧操作可以通过连续的NOSZ表达17增强n 2 O的破坏,并在具有优质NOSZ功能的微生物中实现NOSZ激活。我们使用宏基因组学和19种元蛋白质组学评估18个微生物群落功能和代谢调节,以阐明间歇性曝气方案对N 2 O排放的影响。20与周期性缺氧暴露的间歇性充气通过增强菌只菌的代谢活性,从而显着降低了N 2 O的排放,并清除21 71%的氮。nosz 22的活性在系统适应氧气调节后增加了4至6.5倍,将23次与没有缺氧相的连续氧氧化循环相比。后者导致24 N 2 O排放量增加,这是由于NOSZ活性抑制的25甲基杆菌的产生,而N 2 O的产生增加,该甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基的排放量增加了。我们的发现,26个战略氧气操纵可以为N 2 O的破坏提供能量,为27种开发下一代废水处理技术奠定了基础,以减轻N 2 O排放。28
生物降解因条件温和、成本低廉、不产生二次污染等优点而受到广泛关注。6,7全球三分之二以上的N2O排放来源于土壤生态圈和水圈,在微生物反硝化途径的最后一步可以还原为无害的氮气(N2)。8–10一氧化二氮还原酶(N2OR)是唯一进行生物反硝化过程的酶,11,12因此,有效利用N2OR对于通过生物方法有效控制N2O排放至关重要。N2OR是一种周质多铜酶,为头尾相连的同型二聚体,每个单体包括两个结构域:C端的电子转移双核CuA中心和N端的催化四核CuZ中心。 13,14通常,CuA由6个氨基酸残基配体,包括1个蛋氨酸、1个色氨酸、2个半胱氨酸和2个组氨酸;CuZ则由7个组氨酸配体。15,16基于N 2 OR的三维结构,对N 2 O催化还原机理的一致看法是,N 2 O与CuZ的催化活性位点结合,然后电子从CuA转移,将N 2 O转化为N 2 。
一氧化二氮(N 2 O)是一种具有臭氧破坏潜力的温室气体,通过将N 2 O还原酶(NOSZ)催化的微生物还原为二氮的微生物减少来减轻。具有NOSZ活性的细菌已在pH pH中进行了研究,但低pH n 2 o的微生物学仍然难以捉摸。在波多黎各的Luquillo实验林中收集了热带森林土壤,并以低(0.02 mm)和高(2mm)N 2 O评估的n 2 O减少pH 4.5和7.3的n 2 O评估的n 2 O n 2 o。所有消耗n 2 o的缩影,滞后时间长达7个月,在2 mm n 2 o的缩影中观察到。比较元基因组分析表明,在两个N 2 O喂养方案下,若二环科在环状菌道中占主导地位。在pH 4.5时,peptococaceae在高N 2 O中占主导地位,而低N 2 O微型粒子中的杂种细菌科。从n 2 O还原的微型启发中回收的十七个高质量的元基因组组装基因组(MAG)具有NOS操纵子,所有八个MAGS均来自含有NOSZ型的酸性微观元素,含有NOSZ类型NOSZ和缺乏亚硝酸盐还原酶基因(NIRS / K)。从pH 4.5缩影中回收的八个MAG中的五个代表了新的分类单元,表明在酸性热带土壤中存在未开发的N 2 O还原多样性。对pH 3.5–5.7土壤元素组数据集的调查显示,NOSZ基因通常发生,这表明酸性土壤中N 2 O的降低潜力的广泛分布。
Abstract: Microbial-driven processes, including nitrification and denitrification closely related to soil nitrous oxide (N 2 O) production, are orchestrated by a network of enzymes and genes such as amoA genes from ammonia-oxidizing bacteria ( AOB ) and archaea ( AOA ), narG (nitrate reductase), nirS and nirK (nitrite还原酶)和NOSZ(N 2 O还原酶)。但是,气候因素和农业实践如何影响这些基因和过程,因此,土壤N 2 O排放尚不清楚。在这项全面的综述中,我们定量评估了这些因素对氮过程和土壤N 2 O使用大分析(即Meta-Meta-Analysis)的影响。结果表明,全球变暖增加了土壤硝化和反硝化率,导致土壤N 2 O排放的总体增加159.7%。升高的CO 2刺激了NIRK和NIRS,土壤N 2 O的排放量大幅增加了40.6%。氮肥扩增了NH 4 + -n和NO 3 - -N含量,促进AOB,NIRS和NIRK,并导致土壤N 2 O排放量增加153.2%。生物炭增强的AOA,NIR和NOSZ的应用,最终将土壤N 2 O排放降低15.8%。暴露于微塑料大多会刺激反硝化过程,而土壤n 2 O排放量增加了140.4%。这些发现为氮过程的机械基础和土壤N 2 O排放的微生物调节提供了宝贵的见解。
摘要:使用有机肥料和玉米稻草作为友好的修正措施,可有效改变农田中的土壤氮(N)循环。然而,有机肥料与稻草返回对土壤质量的综合作用尚不清楚,尤其是在响应土壤硝化作用和硝化微生物方面。我们在中国东北部的毛毛土壤中建立了一个实验,主要包括四种治疗方法:CK(没有传统化肥的没有添加),O(有机肥料施用),S(稻草返回)和OS(有机肥料与稻草返回)。使用高通量测序进一步研究了土壤硝化和硝化微生物。我们的结果表明,与CK相比,土壤水含量,容量,直径> 0.25 mm,平均重量直径,总碳,总氮,铵,硝酸铵,硝酸盐,微生物生物量碳和微生物生物氮的含量不正确,并渗透了尤其均匀的尤其尤其是尤其是尤其尤其均匀的压缩性,并渗透了尤其均匀的尤其是尤其是尤其均匀的尤其均匀的尤其尤其是屈光度,并且渗透于尤其是尤其是尤其的渗透性,并取代了尤其的渗透性,并取得S和OS治疗。此外,OS处理有效地增加了可用的钾和可用的磷含量,并减少了三相R型。有机肥料和稻草的应用有效地优化了土壤结构,尤其是OS处理。与CK,O,S和OS治疗相比,氨氧化古细菌(AOA)的丰度较高,并进一步增强了α多样性和较低的氨氧化细菌(AOB)和NIRK -,NIRK-,NIRS-和Nosz -nosz -Type denitpe denitpe denitpe。AOA和NIRK分别是氨氧化过程和亚硝酸盐还原过程的关键驱动因素。同时,有机肥料和稻草的施用调节了硝基磷酸盐(AOA),γ-杆菌(NIRK和NIRS),α),甲状腺酸细菌(NIRK)和贝protebacteria(Nirk)和β(Nirs)(NIRS(NIRS)。有机肥料和稻草通过增强硝化和反硝化微生物群落中的含量丰富,返回土壤结构。在一起,OS治疗是一种合适的稻草返回实践,用于优化中国东北部农田生态系统的营养平衡。但是,这项研究并未确定如何在有机肥料应用和稻草返回下减少传统的氮肥施用;因此,我们旨在在未来的工作中进行相关研究。
多样化的农作物系统和受精策略,以增强土壤微生物组的丰度和多样性,从而稳定其有益的服务,以维持土壤生育能力和支持植物的生长。在这里,我们在欧洲(荷兰,比利时,德国北部)的三个不同长期现场实验中进行了评估,是否多样化的农作物系统和受精策略也影响了其功能性基因丰度。通过定量PCR分析土壤DNA,以量化细菌,古细菌和真菌以及与氮(N)转化有关的功能基因;包括细菌和古细菌硝化(AMOA -BAC,ARCH),分别降解过程的三个步骤(NIRK,NIRS和NOSZ -Cladei,II)和N 2 Asmimi with(NIFH)。作物多样化和受精策略通常增强了土壤总碳(C),N和微生物丰度,但地点之间的变化。多样化的农作物系统和受精策略对功能基因的总体影响要比细菌,古细菌和真菌的丰度强得多。基于豆类的农作物系统不仅在刺激N固定微生物的生长方面具有巨大的潜力,而且在增强N循环的下游功能潜力方面也具有巨大的潜力。基于高粱
Members Nándor Ács, Veronika Ádám, Péter Banczerowski, Gábor Bánhegyi, Károly Bartha, Viktor Bérczi, Dániel Bereczki, Péter Bucsky, Edit Buzás, Károly Cseh, Péter Csermely, Csaba Dobó Nagy, LászlóHarsányi,Ferenc Horkay,LászlóHunyady,PéterPéter,GáborStván,LászlóKalabay,SaroltaKárpáti,MiklósKásler,MiklósKásler Ligeti, József Kovács, György Loson, Judit, László Muszbek, Zsolt Zoltán Nagy, Sándor Nardai, Attila Nemes, János Németh, Zsolt Németh, Béla Noszál, Miklós Palkovits, Gyula Papp, Zoltán Papp, DóraPerczel-forintos,GyãzőPetrányi,CsabaRépássy,MiklósSárdy,PéterSótonyi,Pétonyi,AndrásSzabó,AttilaSzabó,AttilaSzabó,DóraSzabó,MiklósSzathmásssszathmári,Miklissssssssssssssss s lam lalam l lila liale lylrrrrrrrrrrrrrrrrrrrrrrrryryryryryryryryryryryryryryryryryryryryryryryryry&slyrrrrrrrrrrrrry ,, Telegdy,JózsefTímár,Attila Tordai,ZsuzsannaTóth,LászlóTettter,GyörgyWéber,PéterWindischMembers Nándor Ács, Veronika Ádám, Péter Banczerowski, Gábor Bánhegyi, Károly Bartha, Viktor Bérczi, Dániel Bereczki, Péter Bucsky, Edit Buzás, Károly Cseh, Péter Csermely, Csaba Dobó Nagy, LászlóHarsányi,Ferenc Horkay,LászlóHunyady,PéterPéter,GáborStván,LászlóKalabay,SaroltaKárpáti,MiklósKásler,MiklósKásler Ligeti, József Kovács, György Loson, Judit, László Muszbek, Zsolt Zoltán Nagy, Sándor Nardai, Attila Nemes, János Németh, Zsolt Németh, Béla Noszál, Miklós Palkovits, Gyula Papp, Zoltán Papp, DóraPerczel-forintos,GyãzőPetrányi,CsabaRépássy,MiklósSárdy,PéterSótonyi,Pétonyi,AndrásSzabó,AttilaSzabó,AttilaSzabó,DóraSzabó,MiklósSzathmásssszathmári,Miklissssssssssssssss s lam lalam l lila liale lylrrrrrrrrrrrrrrrrrrrrrrrryryryryryryryryryryryryryryryryryryryryryryryryry&slyrrrrrrrrrrrrry ,, Telegdy,JózsefTímár,Attila Tordai,ZsuzsannaTóth,LászlóTettter,GyörgyWéber,PéterWindisch
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
摘要 Rhodanobacter 菌种在受到酸、硝酸盐、金属放射性核素和其他重金属污染的橡树岭保留区 (ORR) 地下环境中占主导地位。为了揭示适应这些混合废物环境的基因组特征并指导遗传工具开发,我们对从 ORR 地点分离的八株 Rhodanobacter 菌株进行了全基因组测序。基因组大小范围为 3.9 至 4.2 Mb,包含 3,695 至 4,035 个蛋白质编码基因,GC 含量约为 67%。根据全长 16S rRNA 序列,七株菌株被归类为 R. denitricans,一株菌株 FW510-R12 被归类为 R. thiooxydans。根据基因注释,全基因组扩增率(泛/核心基因比率)最高的两个直系同源物簇(COG)是“复制、重组和修复”和“防御机制”。除NosZ中预测的蛋白质结构差异外,反硝化基因具有高度的DNA同源性。相反,重金属抗性基因多种多样,其中7%至34%位于基因组岛中,这些结果表明起源于水平基因转移。对四个菌株的甲基化模式分析揭示了独特的5mC甲基化基序。与类型菌株2APBS1相比,大多数直系同源物(78%)的非同义替换与同义替换之比(dN/dS)小于1,表明负选择普遍存在。总体而言,结果为水平基因转移和负选择在污染田间基因组适应中的重要作用提供了证据。罗丹诺杆菌菌株中复杂的限制-修饰系统基因和独特的甲基化基序表明其对基因操作具有潜在的抵抗力。
土壤,持有约1500 pg的总碳(C)和136 pg的总氮(N),代表了这些元素最大的陆地储层(Nieder and Benbi,2008)。然而,它也是温室气体(GHG)排放的重要来源,每年贡献350多个PG CO 2等效物,从而显着影响全球变暖。多年来,大气n 2 O的浓度增加了20%以上,CH 4浓度几乎增加了两倍至1900 ppb,主要归因于微生物活性(Schaefer等,2016)。了解与温室气体的生产和减少同时的微生物机制至关重要。最近的发现,例如非典型一二氮还原酶(NOSZ II),Comammox以及新的过程,例如氧降解和CH 4的厌氧氧化,与硝酸盐,硝酸盐,熨斗和锰氧化物的还原,脑海中的脑囊性cons的作用相关的CH 4的氧化作用,该作用是piver的作用。和n,并突出了针对性策略减少温室气体排放并减轻全球变暖的途径。该研究主题包括九种文章,这些文章对影响温室气体发射的因素(尤其是N 2 O)以及微生物的潜在作用。硝化和硝化作用是产生N 2 O.肥料的施用,尤其是N-肥料,为这种有效的温室气体的排放提供了促进。因此,硝化抑制可能是减少N 2 O排放的潜在方法。在本研究主题中,Lei等人。Xie等。 比较了来自草原的n 2 o 的排放Xie等。比较了来自草原的n 2 o分析了来自48项研究的200多个数据集,发现硝化抑制剂的应用平均降低了总N 2 O排放量的60%,超过70%的土壤铵浓度增加,并降低了约50%的AOB丰度。发现强调了AOB在N 2 O排放中的重要作用,并且可以成为缓解n 2 O的更好指标和目标。