获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
脑电图(EEG)在临床癫痫治疗中常用于监测癫痫患者脑部电信号的变化。随着信号处理和人工智能技术的发展,人工智能分类方法在癫痫脑电信号的自动识别中发挥着重要作用。但传统分类器容易受到癫痫脑电信号中杂质和噪声的影响。针对这一问题,该文设计了一种抗噪声低秩学习(NRLRL)脑电信号分类算法。NRLRL建立低秩子空间连接原始数据空间与标签空间,充分利用监督信息,考虑样本局部信息的保存性,保证类内紧凑性和类间离散性的低秩表示。将非对称最小二乘支持向量机(aLS-SVM)嵌入到NRLRL的目标函数中。 aLS-SVM基于pinball损失函数寻找两类样本间的最大分位数距离,进一步提高了模型的噪声鲁棒性。在Bonn数据集上设计了多个不同噪声强度的分类实验,实验结果验证了NRLRL算法的有效性。