钠离子电池(SIBS)最近被宣布为领先的“锂后”能量存储技术。这是因为SIBS与锂离子电池共享相似的性能指标,而钠则是10 0 0 0 0 0倍的含量。为了了解SIBS的电化学特征并改善了当今的设计,基于物理的模型是必要的。在此,第一次引入了基于物理学的伪两维(P2D)模型。P2D SIB模型分别基于N A 3 V 2(P O 4)2 F 3(NVPF)和硬碳(HC)作为正和负电极。NVPF和HC电极中的电荷转移通过浓度依赖性扩散系数和动力学速率常数描述。模型的参数化基于实验数据和遗传算法优化。表明该模型在预测全细胞HC // NVPF SIBS的排放纤维方面非常准确。此外,可以从施加电流处的模型获得内部电池状态,例如单个电极电池和浓度。在本文中均未阐明电极和电解质的几个关键挑战,并突出显示了提高SIB性能的有用设计注意事项。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
在高电荷状态下缺乏结构稳定性,需要较低的放电截止电压才能获得足够的容量。[5] 相比之下,多聚阴离子化合物通常具有三维稳健框架,与层状氧化物相比,可提供更好的循环稳定性和更平坦的电压曲线。此外,由于多聚阴离子基团(如(PO 4 ) 3 − 、(P 2 O 7 ) 4 − 和(SO 4 ) 2 − )的诱导效应,可以获得更高的工作电压,[6] 使这些化合物成为稳定、高能量密度钠离子电池正极材料的有趣候选者。研究最多的多聚阴离子钠离子正极材料是含钒磷酸盐 Na 3 V 2 (PO 4 ) 3 (NVP)[7,8] 和氟磷酸盐 Na 3 V 2 (PO 4 ) 2 F 3 (NVPF)。 [9] NVPF 在 3.9 V 时的理论容量为 128 mAh g −1(每个分子式单位 2 个电子),比能达到 500 Wh kg −1。此外,可以通过用 O 取代 F 阴离子来调节 NVPF 的电化学性能,形成完全固溶体 Na 3 V 2 (PO 4 ) 2 F 3 − 2 y O 2 y(0 ≤ y ≤ 1)。[10] 例如,Bianchini 等人。表明,在低压端,可以将额外的Na插入Na3V2(PO4)2O2F中,放电时产生Na4V2(PO4)2O2F,这使得Na4V2(PO4)2O2F和NaV2(PO4)2O2F之间可以进行三电子循环。[11]然而,从NaV2(PO4)2F3到V2(PO4)2F3中提取第三个Na尚未被证明是可行的,因为Na提取电位很高(预计为≈4.9V),超出了有机钠离子电解质的稳定窗口。[12]为了降低这种高的Na提取电压,人们考虑使用阳离子替代;然而,只有少数金属阳离子(例如Al)可以取代NVPF结构中的V,其溶解度限制在0.2。[11,13]