15 Con Tomohito Sekiguchi 関口 智仁 基于 CPG 工程的控制创造出具有各向同性腿部布置的多足行星探测车的新型运动模式:推进 (Landon, Naoya)
10:05-10:35非平衡稳态和机制,用于在铁磁铁中产生镁化学电位,并具有两种磁场Arakawa Naoya(Toho University)(Toho University)“非平衡稳态和机制”
“我们致力于使钙钛矿太阳能电池成为最重要的力量来源,从而指导我们朝着碳中立性,使我们能够直接应对持久的能源挑战。”“这笔资金将帮助我们加速与主要日本公司的合作伙伴关系,以满足对下一代太阳能技术的不断增长的需求,这对于满足全球脱碳目标至关重要。” Michiko Kato说:“ Enecoat具有良好的位置,可以推动钙钛矿细胞技术作为基于硅细胞的市场替代品,它为日本提供了巨大的战略价值,并为一系列应用提供了实际利益。”“ Enecoat致力于改变能源基础设施,减少对传统电源的依赖,与我们对可持续未来的愿景保持一致。我们期待成为这一变革性旅程的一部分。”其他投资者的评论:
完整作者列表: Maruyama, Jun;大阪工业技术研究所,环境技术研究部 Maruyama, Shohei;大阪工业技术研究所, Kashiwagi, Yukiyasu;大阪市立技术研究所, Watanabe, Mitsuru;大阪工业技术研究所,电子材料研究部 Shinagawa, Tsutomu;大阪工业技术研究所,电子材料研究部 Nagaoka, Toru;大阪工业技术研究所,材料科学与工程研究部 Tamai, Toshiyuki;大阪工业技术研究所,森之宫中心 Ryu, Naoya;熊本工业研究所,材料开发部 Matsuo, Koichi;广岛大学 Ohwada, Mao;东北大学,先进材料多学科研究中心 Chida, Koki;东北大学, Yoshii, Takeharu;东北大学,先进材料多学科研究中心 Nishihara, Hirotomo;东北大学先进材料多学科研究中心 Tani, Fumito;九州大学材料化学与工程研究所 Uyama, Hiroshi;大阪大学,
商业建筑需求响应策略 David S. Watson、Sila Kiliccote、Naoya Motegi 和 Mary Ann Piette 劳伦斯伯克利国家实验室 摘要 本文介绍了可用于商业建筑的策略,这些策略可用于暂时减少电力负荷,以应对电网紧急情况(供应有限)或应对不采用这些策略时产生的高价格。本文讨论的需求响应策略基于三年自动需求响应现场测试的结果,其中测试了 28 个商业设施,总占用面积超过 1100 万平方英尺。虽然现场测试中的需求响应事件是远程启动并自动执行的,但如果需要,所使用的策略也可以由现场建筑操作员启动并手动执行。虽然可以在正常的建筑运行期间使用节能措施,但需求响应措施是暂时的;它们用于暂时减少需求。需求响应策略通过暂时降低设施的服务水平来实现电力需求的减少。供暖、通风和空调 (HVAC) 和照明是商业建筑中最常见的针对需求响应进行调整的系统。需求响应策略的目标是满足电力节约目标,同时尽量减少对建筑物居住者或
通过胸部 X 光片进行预测:一项多中心研究 主要研究员:佐藤洋一 名古屋大学医学院 共同研究员:山本则夫 宫本整形外科医院 稻垣直哉 慈惠大学柏医院 家崎雄介 国立医院组织 名古屋医疗中心 高原俊介 兵库县立加古川医疗中心 尽管全世界患有骨质疏松症的患者数量正在增加,但目前的诊断和治疗还不够充分。在这项研究中,我们开发了一个深度学习模型来通过胸部 X 光片预测骨矿物质密度 (BMD) 和 T 值,胸部 X 光片是最常见、最容易获得且成本最低的医学影像检查方法之一。本研究中使用的数据集包含 17,899 张图像,这些图像对应于 2010 年至 2021 年期间在六家医院接受双能 X 射线吸收仪 (DXA) 和胸部 X 光检查的 10,102 名患者。对于学习标签,我们使用 (1) 髋部和腰椎的 BMD (g/cm2) 和 (2) 基于髋部或腰椎 T 分数的诊断(正常、骨质减少和骨质疏松症)。然后,我们通过胸部 X 光片、年龄和性别的集成学习来训练深度学习模型,以使用回归和 T 分数进行多类分类来预测 BMD。我们评估了以下两个指标来评估深度学习模型的性能:(1) 预测和真实 BMD 之间的相关性和 (2) 预测类别和真实类别之间 T 分数的一致性。BMD 预测的相关系数为髋部 = 0.75,腰椎 = 0.63。正常、骨质减少和骨质疏松诊断的 T 分数预测曲线下面积分别为 0.89、0.70 和 0.84。这些结果表明,所提出的深度学习模型可能适用于通过预测胸部 X 光片的 BMD 和 T 分数来筛查骨质疏松症患者。
计划委员会:英特尔公司(美国)的Frank E. Abboud; UWE F.W.Behringer,UBC微电子学(德国); Ingo Bork,西门子Eda(美国); Brian Cha,Entegris,Inc。(韩国,共和国); Sandeep Chalamalasetty,Micron Technology,Inc。(美国);三星电子公司Jin Choi(韩国,共和国); Aki Fujimura,D2S,Inc。(美国); Emily E. Gallagher,IMEC(比利时); lasertec USA Inc. Arosha W. Goonesekera(美国); Naoya Hayashi,Dai Nippon Printing Co.,Ltd。(日本); Henry H. Kamberian,Photronics,Inc。(美国); Bryan S. Kasprowicz,美国Hoya Corp.(美国); Eung Gook Kim,E-Sol,Inc。(韩国,共和国); Romain Lallement,IBM Thomas J. Watson Research Ctr。(美国);英特尔公司(美国)Ted Liang; Nihar Mohanty,Meta(美国);肯特·H·纳川(Kent H. Dong-Seok Nam,ASML(美国);高海·奥努(Takahiro Onoue),霍亚公司(Japan)(日本); Danping Peng,TSMC北美(美国); Jed H. Rankin,IBM Corp.(美国);道格拉斯·J·雷斯尼克(Douglas J. Resnick),佳能纳米技术公司(美国); Carl Zeiss Sms Ltd.(以色列)的Thomas Franz Karl Scheruebl; Ray Shi,KLA Corp.(美国); Jaesik Son,SK Hynix System Ic Inc.(韩国,共和国);西门子Eda(美国)的Yuyang Sun; lasertec U.S.A.,Inc。Zweigniederlassung Deutschland(德国)Anna Tchikoulaeva(德国);克莱尔·范·拉尔(Claire Van Lare),荷兰ASML B.V.(荷兰); Yongan Xu,Applied Materials,Inc。(美国); Yamamoto Kei,Fujifilm Corp.(日本); Seung-Hune Yang,三星电子有限公司(韩国,共和国); Nuflare Technology,Inc。(日本)舒斯助Yoshitake; Bo Zhao,Meta(美国); Larry S. Zurbrick,Keysight Technologies,Inc。(美国)
Motoyasu Adachi 1 , Kenichi Asano 2 , Thomas Busch 3 , Tianben Ding 4 , Evan Economo 3 , Hidenori Endo 5 , Ryosuke Enoki 6 ,7 , Ritsuko Fujii 8 , 9 , Katsumasa Fujita 10 , 11 , 12 , Kyoko Fujita 13 , Naoya Fujita 14 , Takasuke Fukuhara 15,Josephine Galipon 16,17,18,Hiroshi Harada 19,Yoshie Harada 20,21,22,Takeshi Hayakawa 23,Shinjiro Hino 24,Eishu Hirata 25,26,Tasuku Honjo 27 ,33,Yuichi Iino 34,Hiroshi Ikeda 35,Koji Ikeda 36,Yuji Ikegaya 37、38、39,Daichi Inoue 40,Tsuyoshi Inoue 41,Masaru Ishii Ishii 42、42、43、43、43、44,Shoji Ishizaka 45 45,45,izakakiizakiizakiizakiizakiizakiizakiizakiiza 45,45,akihito 45 Kimitsune Ishizaki 48,Terumasa Ito 49,Kenji Kabashima 50,Takaaki Kajita 51,52,53,Azusa Kamikouchi 54,Hiroshi Kanno 4,55,Hitoshi Kasai 56,Satoshi Kasai 57 Kikuchi 60,Yasutaka Kitahama 4,Koichi Kobayashi 61,Satoshi Kodera 62,Tamiki Komatsuzaki 63,64,65,Hidetoshi Kono 1,66,Hidetoshi Kono 1,66,Tsuyoshi Konuma 67,Yassei Konuma 67,Yassei Kudo 68,daiSuke Kumike Kumike Kumuke 69, Shoen Kume 70, Erina Kuranaga 71,72, Fabio Lisi 4, Kiminori Maeda 73, Kazuhiro Maeshima 74,75, Kanetaka M. Maki 76, Hiroyuki Matsumura 4, Takeo Minamikawa 77, Emi Minamitani 47,78, Yoshiko Miura 79, Kyoko Miura 80, Norikazu Mizuochi 81,82,83, Masayoshi Mizutani 84, Hiroki Nagashima 73, Ryoichi Nagatomi 85,86, Kuniyasu Niizuma 55,87,88, Masako Nishikawa 89, Emi Nishimura 90,91, Norihiko Nishizawa 92, Hiroaki Norimoto 54,61, Osamu Nureki 34, Fumiaki Obata 19,93, Shizue Ohsawa 54, Misato Ohtani 94, Yoshikazu Ohya 94, Kimihiko Oishi 95, Mariko Okada 20, Taku Okazaki 96, Satoshi Omura 97, Yuriko Osakabe 70, Tsuyoshi Osawa 98,Yukitoshi Otani 99,Walker Peterson 4,
图 1.旧金山 ...................................................................................................................... 5 图 2.萨克拉门托...................................................................................................................... 5 图 3.指南内容概述 .................................................................................................... 6 图 4 – 商业新建建筑按建筑面积细分预测,总计 157,000,000 平方英尺/年。来源:加州能源委员会 ...................................................................... 11 图 5。模拟在设计中的作用 ...................................................................................................... 18 图 6。测量的系统气流,站点 3............................................................................................. 20 图 7。测量的空气处理器提供的冷却,站点 3(浅色条包括 2002 年 8 月至 10 月,深色条涵盖 2002 年 11 月至 2003 年 1 月) ............................................................................................. 20 图 8。典型的无管道回流管道竖井 ............................................................................................. 28 图 9。典型的管道立管 ............................................................................................................. 29 图 10。测量的照明时间表(设计负荷计算的第 90 个百分位数和能量模拟的第 50 个百分位数)小型、中型和大型办公楼 – ASHRAE 1093-RP...................................................................................................................... 38 图 11。测量的工作日照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 12。测量的周末照明曲线 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................................. 40 图 13。办公设备负荷系数比较 – Wilkins, C.K.和 N. McGaffin。ASHRAE 杂志 1994 - 测量办公楼中的计算机设备负载 ....... 41 图 14。测量设备计划(90 百分位数用于设计负载计算,50 百分位数用于能量模拟)适用于小型、中型和大型办公楼 - ASHRAE 1093-RP............................................................................................................. 44 图 15。测量的插头功率密度工作日概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 16。测量的插头功率密度周末概况 – 站点 1 办公区域显示平均值(线)和最小/最大值(虚线)............................................................................................. 45 图 17。测量的站点 5 工作日插头负载概况(1999 年 11 月 - 2000 年 9 月)来源:Naoya Motegi 和 Mary Ann Piette,“从设计到运营:新建筑绩效合同的多年结果”,2002 年 ACEEE 夏季研究......................................................................................................................... 46 图 18。CalArch 基准测试工具结果、办公楼用电强度、PG&E 和 SCE 数据(以不同颜色表示)共计 236 栋建筑...................................................................................................................... 48 图 19。CalArch 基准测试工具结果、办公楼燃气使用强度、共计 43 栋建筑的 PG&E 数据............................................................................................. 48 图 20。2003 年 2 月 7 日在站点 #4 测得的 CO 2 水平......................................................................... 54 图 21。VAV 热水再热箱控制 - 单最大值............................................................................. 58 图 22。VAV 热水再热箱 - 双最大值......................................................................................... 60 图 23。示例 VAV 箱入口传感器性能图表,CFM 与速度压力信号............................................................................................................................. 67