基于活性材料的执行器的集成添加剂制造可能会在跨生物医学工程,机器人技术或航空航天等学科的许多应用中取代常规电动机。在这项工作中,通过由热塑性粘合剂和金属粉末组成的3D打印的纤维打印来证明基于挤出的基于挤出的功能性NITI形状内存合金。两种合金是制造的,一种显示超弹性,另一种在室温下显示形状的内存特性。两种合金的微观结构均具有特征性的特征,并具有透明的热机械特性。3D打印的NITI显示形状的记忆应力为1。分别为1%的超弹性应变1。3%的施加应变为4%。为了扩大形状记忆应力执行器的几何形状,设计,制造和测试。这项研究的结果可能会在活动结构的增材制造领域中找到应用,也称为4D打印。通常,多种材料用于此类结构,这些结构通常会遭受机械性能和耐用性不佳的影响。在这项工作中对金属材料的使用可能有助于克服这些局限性。2022作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
对采用各种增材制造方法制备的样品的结构、织构、转变温度和超弹性能进行了比较。采用激光工程净成型 (LENS) 方法制备的样品的织构与 <001> 构建方向有几度偏差,但成分接近初始粉末成分,从而具有超弹性效应。电子束增材制造 (EBAM) 样品在室温下表现出马氏体结构,这是因为转变温度转移到了更高的范围。这种转变是由于不同的加工条件导致的 Ni 含量较低。然而,EBAM 方法在构建方向上产生了更清晰的 <001> 织构,并且可以在室温以上获得良好的超弹性效应。使用 EDS 和电子衍射分析将尺寸为 0.5-2 毫米的金属间化合物颗粒鉴定为 Ti 2 Ni 相。该相通常形成在晶界处。与 LENS 方法相反,EBAM 制备的样品表现出富含 Ni 的初级颗粒,这是由不同的加工条件引起的,这些加工条件降低了固溶体中的 Ni 含量,从而提高了马氏体转变温度。在 500°C 下老化可使 LENS 和 EBAM 样品的马氏体转变温度转移到更高的范围。这是由于形成了富含 Ni 的连贯沉淀物。在用这两种方法制备并在 500°C 下老化的样品中,主要在 {011} B19' 平面上观察到马氏体 B19' 孪晶的存在。关键词:增材制造;形状记忆合金;NiTi;TEM 研究
伦敦,HA7 4LP,英国 摘要 采用多丝电弧增材制造 (MWAAM) 成功制备了 TC4/NiTi 多材料结构件。本文展示了仿生梯度夹层构建策略下 TC4/NiTi 多材料结构件的界面特征和力学性能。结果表明,获得了极限抗压强度为 (1533.33±26 MPa) 的 MWAAM TC4/NiTi 梯度异质合金。优异的压缩行为主要归因于梯度区的良好过渡,EBSD 分析表明梯度区的晶粒尺寸细小,差异施密特因子值较小。随着 NiTi 含量的增加,从 TC4 区到 NiTi 区的相组成依次演变为:α-Ti + β-Ti → α-Ti + NiTi 2 → NiTi 2 → NiTi 2 + NiTi → NiTi + Ni 3 Ti。梯度异质合金的显微硬度范围为310±8~230±11 HV,其中区域B处硬度最高,为669.6±12 HV,这是由于NiTi 2 强化相的析出所致;试样的极限断裂应力为1533.33±26 MPa,应变为28.3±6%;在10次加载/卸载循环压缩试验过程中,MWAAM TC4/NiTi梯度异质合金的不可回复应变逐渐趋近于2.75%。
1 Fraunhofer Cluster of Excellence Programmable Materials, 79108 Freiburg im Breisgau, Germany 2 Fraunhofer Institute for Mechanics of Materials IWM, 79108 Freiburg im Breisgau, Germany 3 Lightweight Systems, Saarland University, 66123 Saarbrucken, Germany 4 Fraunhofer Institute for Integrated Circuits IIS, 91058德国Erlangen 5 Fraunhofer机床和成立技术IWU研究所,德累斯顿,德累斯顿,6弗劳恩霍夫非造成的测试研究所IZFP IZFP,66123,德国萨尔布鲁肯,德国 *通信 *通信:); sarah。fincher@izfp.fraunhofer.de(s.c.l.f.)†当前地址:Deggendorf理工学院应用计算机科学学院,德国Deggendorf 94469。‡当前地址:复杂材料研究所,莱布尼兹·伊夫·德累斯顿(Leibniz ifw Dresden),德国德累斯顿(Dresden),德国。
重量轻,出色的冲击力和能量吸收性能的晶格结构的抽象激光添加剂制造(AM)在航空航天,运输和机械设备应用程序领域中引起了极大的关注。在这项研究中,我们使用拓扑优化方法设计了四个梯度晶格结构(GLS),包括单向GL,双向增加GL,双向降低GL和无GLS。所有GLS均通过激光粉末床融合(LPBF)生产。进行了单轴压缩测试和有限元分析,以研究梯度分布特征对变形模式和GLS的能量吸收性能的影响。结果表明,与45°无GLS的剪切裂缝特征相比,单向GL,双向增加GL和双向降低的GLS具有逐层骨折的特征,显示出相当大的提高能量吸收能力。双向增加的GL表现出剪切裂缝和按层裂缝的独特组合,分别具有最佳的能量吸收性能,可分别在0.5菌株时具有235.6 J和9.5 J g-1的特异性能量吸收。结合NITI合金的形状记忆效应,进行了多个压缩加热恢复实验,以验证LPBF所处理的NITI GLS的形状存储器函数。这些发现对GLS的未来设计具有潜在的价值,并通过激光AM实现NITI组件的形状记忆功能。
抽象目的 - 本文的目的是研究使用激光粉末床融合(LPBF)制造的镍含量(NITI)部分对镍含量(NITI)部分的均匀性的影响。此外,已经研究了制造参数和不同的熔融策略的影响,包括多个重新粘贴周期,可打印性和宏缺陷,例如孔隙和裂纹形成。设计/方法/方法 - 使用LPBF工艺来制造元混合粉末的NITI合金,并通过使用重新制定的扫描策略来评估改善制造标本的均匀性。此外,还使用了单一熔体和最多两个遥控器。发现 - 结果表明,重新升压可能对改善密度以及化学和相组成均匀化是有益的。扫描电子显微镜中的反向散射电子模式显示,在没有粘合的Ni和Ti元素粉末的情况下,响应增加了遥远的数量。所研究熔体的NITI零件的微值值相似,范围为487至495 HV。尽管如此,观察到的测量误差会随着遥控器的增加而降低,表明化学和相组成均匀性的增加。然而,X射线衍射分析揭示了多个阶段的存在,而与熔体运行的数量无关。独创性/价值 - 首次使用了作者的知识,使用重新放置扫描策略,通过LPBF制造了基本混合的NITI粉末。
图1 NiTi粉末的SEM/EDS表征:(a)粉末形貌,(b)粉末横截面和EDS取样点位置,(c)Ni元素分布,(d)Ti元素分布和(e)四个点的EDS峰值
1 加拉茨大学工程学院机械工程系,Domneasc ă 47, 800008 Galati,罗马尼亚 2 先进车辆系统中心(CAVS),密西西比州立大学,斯塔克维尔,MS 39762,美国;bagheri.274@gmail.com 3 微机电系统中心(CMEMS-UMinho),Campus de Azur é m,米尼奥大学,4800-058 Guimarães,葡萄牙;brunohenriques@dem.uminho.pt 4 陶瓷和复合材料实验室(CERMAT),Campus Trindade,圣卡塔琳娜联邦大学(UFSC),Florian ó polis 88040-900,SC,巴西 5 德累斯顿工业大学制造技术研究所,01062 Dresden,德国; andres_fabian.lasagni@tu-dresden.de 6 弗劳恩霍夫制造研究所和 Strahltechnik IWS,Winterbergstr。 28, 01277 Dresden, 德国 7 奥本大学机械工程系, Auburn, AL 36849, USA; shamsaei@auburn.edu 8 国家增材制造卓越中心 (NCAME),奥本大学,奥本,AL 36849,美国 *通讯作者:mihaela.buciumeanu@ugal.ro (MB); fsamuel@dem.uminho.pt (FSS)
使用两种不同的快速制造方法 - 电子束添加剂制造(EBAM)和激光净成型(镜头) - 用于制造NITI元素。以电线或球形粉末形式的初始材料的微观结构和马氏体转化温度。使用镜头技术制造的样品在2 26 C(以DSC中的最大Martensite峰值为最大值表示)时显示了马氏体转化温度(MTT),与原粉相比较低。在使用EBAM制造的样品的情况下,MMT达到2 19 C. Martensite和反向转化的峰弥漫,这是由于样品中晶粒尺寸和组成的差异。在500°C下的衰老2小时不仅在两个样品冷却过程中不仅导致R相分离,还导致了更敏锐和更高转化峰的形成,以及MTT向更高温度的转移。微观结构研究显示,柱状晶粒,靠近沉积元件和底板的界面,垂直于板表面生长。谷物沿着生长方向显示轴向纤维纹理。茎显微照片揭示了富含Ti中的细长细胞的存在。在此过程中形成富含Ti的颗粒导致基质中Ti的耗竭,并与初始NITI粉末相比有助于MTT的增加。透镜沉积样品在奥氏体中还包含较高的位错密度。压缩应力/应变样品样品的应变曲线仅显示马氏体的变形,而透镜沉积的变形在压缩模式下显示出几乎完全的超弹性效应,最高3%。