NIPAH是一种高度感染性病毒疾病,死亡率很高。一种名为Nipah的病毒是该疾病的原因。最近,该疾病已在全国28个地区报道。为了阻止该病毒的传播,政府正在采取积极的步骤。为此,政府敦促谨慎,并为感染者采取必要的措施。根据该指令,首都莫哈卡利的DNCC Covid医院已为NIPAH患者准备。根据IEDCR,今年有十名被诊断出患有NIPAH病毒,结果七个人死亡。不幸的是,尼帕病毒没有治愈或疫苗接种。如果一个人幸存下来,则可能会产生身体后果。因此,至关重要的是,每个人都必须注意清除这种严重的疾病。
亨德拉病毒 ( HeV ) 和尼帕病毒 ( NiV ) 出现于二十世纪最后十年,是导致呼吸道和神经系统疾病爆发的原因,感染了许多动物物种和人类。1994 年,亨德拉病毒在澳大利亚布里斯班的一个马厩中引发了严重的呼吸道疾病,导致 13 匹马和一名驯马师死亡。尼帕病毒在 1998 年 9 月至 1999 年 4 月期间出现在马来西亚的人群中,导致致命的急性脑炎,此前它主要在猪群中传播,是一种病因不明的严重呼吸道疾病。为阻止疾病传播,超过一百万头猪被扑杀。在澳大利亚,亨德拉病毒已导致七名感染者中有四人死亡,而据报道,马来西亚、新加坡、孟加拉国和印度共有 585 例尼帕病毒感染病例,约 300 人死亡。最近,菲律宾报告了致命的尼帕病毒脑炎病例,17 例人类病例中有 9 例死亡。狐蝠属的果蝠(飞狐)是这两种病毒的天然宿主。
保护相关性 (CoP) 是预测对传染病的一定程度保护的生物学参数。完善的保护相关性有助于疫苗的开发和许可,因为它可以评估保护效果,而无需让临床试验参与者接触疫苗旨在保护的传染源。尽管病毒具有许多共同的特征,但保护相关性在同一个病毒家族中,甚至在同一个病毒中,根据所考虑的感染阶段,可能会有很大差异。此外,感染过程中相互作用的各种免疫细胞群之间的复杂相互作用以及某些病原体的高度遗传变异,使得识别免疫保护相关性变得困难。一些对公共卫生影响重大的新出现和重新出现的病毒,如 SARS-CoV-2、尼帕病毒 (NiV) 和埃博拉病毒 (EBOV),在识别 CoP 方面尤其具有挑战性,因为这些病原体已被证明会在感染期间使免疫反应失调。尽管已证明病毒中和抗体和多功能 T 细胞反应与针对 SARS-CoV-2、EBOV 和 NiV 的一定程度的保护相关,但免疫的其他效应机制在塑造针对这些病原体的免疫反应方面发挥着重要作用,而这些免疫反应反过来可能成为保护的替代相关因素。本综述描述了在 SARS-CoV-2、EBOV 和 NiV 感染期间激活的适应性和先天性免疫系统的不同组成部分,这些组成部分可能有助于保护和清除病毒。总体而言,我们重点介绍了与人类针对这些病原体的保护相关的免疫特征,这些特征可以用作 CoP。
该联盟的英国合作伙伴为疫苗开发带来了一系列商业技能和专业知识。EnsiliTech 专门研究无需冷藏的生物制品,使二氧化硅涂层疫苗无需冷藏即可在热带地区储存和运输;Global Access Diagnostics 开发创新的快速横向流动免疫测定测试 - 并将开发一种可区分感染猪和接种疫苗猪的伴随诊断测试,而 BioVacc Consulting 则为疫苗研发提供专家见解。
使用 NetMHCcons 1.1 [27] (https://services.health tech.dtu.dk/services/NetMHCcons-1.1) 预测人类 CTL 表位。使用 25 种参考人类白细胞抗原 (HLA) [28] 进行预测,并设置截止百分位等级 (PR) ≤0.5 或半最大抑制浓度 ≤50。使用 NetMHCpan 4.1 [29] (https://services.healthtech. dtu.dk/services/NetMHCpan-4.1) 预测猪 CTL 表位。使用 45 种猪白细胞抗原 (SLA) [30–33] 进行预测,并设置截止 PR ≤0.5。 NetCTLpan 1.1 [34] (https:// services.healthtech.dtu.dk/services/NetCTLpan-1.1) 用于筛选具有高效蛋白酶体裂解和与抗原加工转运相关的转运蛋白的表位。设定筛选的截止值为 PR ≤1。人类和猪的 CTL 表位预测仅限于 9 肽。
nipah病毒(NIV)是一种高度致病的人畜共患病毒,会引起严重的脑炎和呼吸系统疾病,人类死亡率高(> 40%)。在各种果蝙蝠物种上的流行病学研究是该病毒的天然储层,已表明NIV广泛分布在整个东南亚。因此,迫切需要开发有效的NIV疫苗。在这项研究中,我们使用LC16M8菌株产生了表达NIV糖蛋白(G)或融合(F)蛋白的重组疫苗病毒,并检查了其抗原性和诱导免疫力的能力。中和对NIV的中和抗体被成功诱导的LC16M8表达NIV G或F的仓鼠,并且抗体滴度高于预见的其他疫苗病毒载体诱导的抗体滴度,以防止致命NIV感染。这些发现表明,与其他基于Poxvirus的疫苗相比,基于LC16M8的疫苗格式作为增殖疫苗具有优越性。此外,在仓鼠三轮疫苗接种期间收集的数据为抗体升高过程中收集的数据为临床使用基于疫苗的病毒疫苗针对NIV疾病提供了重要的基础。试用注册:NCT05398796。
许多RNA和DNA病毒表现出神经脱落特性,并且可能与急性或慢性神经系统表现有关(Debiasi和Tyler,2004)。因此,引起中枢神经系统(CNS)疾病的病原体的快速鉴定至关重要,预后的生物标志物对早期疾病管理和对治疗性干预措施有帮助。然而,研究与病毒感染有关的神经退行性和神经蛋白的流动过程的生物标志物,由于实验模型的数量有限,在访问人类中枢神经系统中的多项培养,并且通常可用的脑组织可用(Rauf等人,20222年)。在研究由病毒感染触发的神经退行性疾病时,应考虑许多因素。可能引起中枢神经系统感染的因素是病毒接种物,这常常被忽略。例如,小鼠模型仅在感染高剂量的黄热病病毒(YFV)时会出现神经系统症状,这表明某些血浆YFV浓度对于神经浸觉是必需的(Douam等,2017)。一方面感染的途径也至关重要。神经细胞可以直接暴露,例如嗅觉细胞,如人类β-核可纳病毒所述(Desforges等,2014)。此外,神经元可以通过神经元到神经元转移感染,如疱疹和狂犬病病毒所示(Ugolini,2011年)。某些病毒可能是高度神经性到未成熟的中枢神经系统的神经性,例如寨卡病毒(Garcez等,2016; Schuler- Faccini et al。,2016)。此外,感染部位也可能是症状发展的关键。最后,神经元绕过血脑栓(BBB),例如通过感染BBB内皮细胞感染或在“ Trojan马”策略中感染白细胞的迁移,如Nipah Virus(Mathieu等2008),htlv-1(AFN),如nipah virus eT。蓝色病毒(Maximova and Pletnev,2018年)。从这个意义上说,莎(Sha and Chen)在重庆三大大学(Chonging Three Gorges University)
• Human immunodeficiency virus cultures • Highly pathogenic avian influenza virus cultures • Japanese Encephalitis virus cultures • Junin virus • Kyasanur Forest disease virus • Lassa virus • Machupo virus • Marburg virus • Monkeypox virus • Mycobacterium tuberculosis cultures • Nipah virus • Omsk hemorrhagic fever virus • Poliovirus cultures • Rabies virus • Rickettsia prowazekii cultures • Rickettsia rickettsia cultures • Rift Valley fever virus • Russian spring-summer encephalitis virus • Sabia virus • Shigella dysenteriae type 1 cultures • Tick-borne encephalitis virus cultures • Variola virus • Venezuelan equine encephalitis virus • West Nile virus培养物•黄热病病毒培养•耶尔森氏念珠菌培养