神经形态工程已成为开发大脑启发式计算系统的一种有前途的途径。然而,传统的基于电子人工智能的处理器经常遇到与处理速度和散热相关的挑战。作为一种替代方案,已经提出了此类处理器的光学实现,利用光的固有信息处理能力。在光学神经形态工程领域探索的各种光学神经网络 (ONN) 中,脉冲神经网络 (SNN) 在模拟人脑的计算原理方面表现出显著的成功。光学 SNN 基于事件的脉冲特性提供了低功耗操作、速度、时间处理、模拟计算和硬件效率方面的功能,这些功能很难或不可能与其他 ONN 类型相匹配。在这项工作中,我们介绍了开创性的自由空间光学深度脉冲卷积神经网络 (OSCNN),这是一种受人眼计算模型启发的新方法。我们的 OSCNN 利用自由空间光学来提高功率效率和处理速度,同时保持模式检测的高精度。具体而言,我们的模型在初始层采用 Gabor 滤波器进行有效特征提取,并利用使用现成光学元件设计的强度到延迟转换和同步器等光学元件。OSCNN 在基准数据集(包括 MNIST、ETH80 和 Caltech)上进行了严格测试,显示出具有竞争力的分类准确性。我们的比较分析表明,OSCNN 仅消耗 1.6 W 的功率,处理速度为 2.44 毫秒,明显优于 GPU 上的传统电子 CNN,后者通常消耗 150-300 W,处理速度为 1-5 毫秒,并且与其他自由空间 ONN 相媲美。我们的贡献包括解决光学神经网络实现中的几个关键挑战。为了确保组件对准的纳米级精度,我们提出了先进的微定位系统和主动反馈控制机制。为了提高信号完整性,我们采用了高质量的光学元件、纠错算法、自适应光学和抗噪声编码方案。通过设计高速光电转换器、定制集成电路和先进的封装技术,优化了光学和电子元件的集成。此外,我们还利用高效、紧凑的半导体激光二极管,并开发了新颖的冷却策略,以最大限度地减少功耗和占地面积。