转录3(STAT3)的抽象信号换能器和激活因子是一个很好的转录因子,它介导了散装急性急性髓细胞性白血病(AML)细胞和白血病干细胞(LSC)中氧化磷酸化和谷氨酰胺摄取(LSC)。STAT3还显示出在AML细胞中的线粒体转移到线粒体,尤其是在丝氨酸727(PSTAT3 S727)残基处磷酸化时。对STAT3的抑制会导致线粒体功能受损并降低白血病细胞活力。我们在线粒体中发现了STAT3与电压依赖性阴离子通道1(VDAC1)的新型相互作用,该通道提供了一种机制,该机制通过该机制调节线粒体功能和细胞存活。通过VDAC1,STAT3调节线粒体中的钙和活性氧(ROS)平衡。STAT3抑制作用还导致LSC的植入潜力显着降低,包括对Venetoclax的主要样品。这些结果暗示STAT3是AML中的治疗靶标。引言急性髓细胞性白血病(AML)是一种遗传异质和高度攻击性的髓样肿瘤,预后不良。1,2 AML的标准治疗历史上由蒽环类和细胞押滨的诱导化学疗法组成,然后与造血干细胞移植或高剂量的细胞移植或高剂量的细胞固结。3最近,随着新颖的靶向疗法的出现,治疗选择扩大了。4-7然而,尽管响应率很高,但复发还是常见的。10,11 LSCs在其对线粒体活性和氧化磷酸化(OXPHOS)的优先依赖方面表现出了独特的脆弱性。6复发性疾病被认为源自抗治疗性白血病干细胞(LSCS)8的静止亚群,与诊断相比,在复发时发现,在复发时发现了更大的丰度,与9-12相比,与生存率负相关。12-14虽然与Venetoclax(VEN)抑制Bcl-2与甲基化剂(HMA)Azacitidine结合使用,但通过抑制OXPHOS表现出对LSC的选择性,但13个耐药性经常通过线粒体代谢或替代性抗副疗法途径的激活而改变。15-19进一步,先前对前线HMA/VEN进展的患者的先前研究表现出非常差的结果,HMA/VEN失败3个月或更短后,生存率中位数。20,21种针对LSC通过其对OXPhos的依赖的新策略具有重大关注,并且在几份报告中已经描述了7,13,22,但是需要进一步的研究来阐明这些观察结果的基础机制。转录3(STAT3)的信号换能器和激活因子已被证明对白血病生成很重要,并且已知在许多AML患者样品和细胞系中都高度表达。23-26在典型上,已知STAT3在残基Tyr 705处进行磷酸化,从而导致二聚化并转移到核中,在该细胞核中它作为调节细胞发育,更新,增殖和细胞死亡的转录因子的作用。24,27-29我们以前的工作还确定了STAT3的转录活性通过MYC-SLC1A5介导的途径调节线粒体功能。26尽管其描述了核作用为转录因子,但STAT3也被发现局部到线粒体。30,31先前的工作提出了线粒体中各种功能,包括调节电子传输链(ETC)活性,30-32线粒体基因的调节,33和线粒体钙通量的调节。34,35,而在Tyr 705(PSTAT3 Y705)和Ser 727(PSTAT3 S727)位点的STAT3磷酸化均在线粒体中都发现了30-32,35,36 Ser 727磷酸化对于调节
转移性结直肠癌是一种令人沮丧的疾病,因为尽管对化学疗法和靶向疗法[抗血管内皮生长因子(抗VEGF)(抗VEGF)和抗皮肤生长因子受体(抗EGFR)],但耐药性迅速出现并变得普遍。因此,二线疗法和贝伐单抗的二线治疗在一线治疗方面进展的RAS突变转移性结直肠癌患者的功效差,根据先前的bevacizumab曝光(1,1,2,2),反应率在10%至15%,无进展生存率(PFSS)范围为6至7个月。化学疗法和贝伐单抗耐药性的机制尚不清楚,因此没有用于晚期结直肠癌的定制二线治疗策略。The key players linked to chemotherapy resistance in advanced colorectal cancer include oxidative phosphorylation (OXPHOS), a main metabolic program in cancer (3), glucose-6-phosphate dehydrogenase, a critical enzyme in the antioxidant-generating pentose phosphate pathway (PPP) (4), and polo-like kinase-1 (PLK1) (5), an enzyme主要与细胞周期调节有关。这些关键的肿瘤途径如何参与获得的抗药性
在许多癌症类型中都观察到了代谢改变。因此,失调的代谢已成为该疾病的一个新兴标志,其中代谢经常被重新连接到有氧糖酵解。这导致了“代谢重编程”概念的产生,并因此得到了广泛的研究。多年来,它的特点是有氧糖酵解的增强,癌细胞利用 TCA 循环中某些酶的关键突变和增加的葡萄糖摄取来实现“代谢表型”,从而获得增殖优势。许多研究详细介绍了负责糖酵解转换的信号通路和分子机制。然而,糖酵解并不是癌细胞依赖的唯一代谢过程。氧化磷酸化 (OXPHOS)、糖异生或脂肪酸的 β-氧化 (FAO) 可能与多种肿瘤的发展和进展有关。在某些情况下,这些代谢对于肿瘤的存活甚至比有氧糖酵解更为重要。本综述将重点介绍这些代谢变化对癌症发展和存活的影响。我们还将分析调节这些代谢过程之间平衡的分子机制,以及从这些研究中可以得到的一些治疗方法。
肿瘤体内的癌症干细胞 (CSC) 亚群以肿瘤复发和转移而闻名。CSC 对常规疗法表现出内在抵抗力,并且在肿瘤内具有表型可塑性,这使得它们成为常规疗法的难以靶向的靶点。与大部分癌细胞相比,CSC 根据需要具有不同的代谢表型。CSC 表现出代谢可塑性,并不断改变其在糖酵解和氧化代谢 (OXPHOS) 之间的代谢状态,以适应营养物质的匮乏和治疗压力。与非 CSC 相比,CSC 的代谢特征截然不同,因此为设计更有效的靶向 CSC 策略提供了机会。CSC 中代谢转换的机制仍未阐明,但现有证据表明肿瘤微环境会影响癌细胞的代谢表型。了解 CSC 代谢可能有助于发现新的有效临床靶点,以防止癌症复发和转移。本综述总结了目前对 CSC 代谢的了解,并强调了潜在的靶向治疗策略。
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。
巨噬细胞中线粒体生物能的受损可能会驱动高炎性细胞因子反应1-6,但是是否也可能是由遗传的mtDNA突变引起的。在这里,我们使用一种多摩变方法来解决这个问题,该方法将超分辨率成像和代谢分析整合到来自丙氨酸7的线粒体trNA中异质质突变(M.5019a> g)的线粒体疾病的小鼠模型中的巨噬细胞。这些M.5019a> G巨噬细胞在呼吸链复合物中表现出缺陷,并且由于中骨内部翻译减少而导致氧化磷酸化(OXPHOS)。以适应这种代谢应激,线粒体融合,还原性谷氨酰胺代谢和有氧糖酵解均增加。在炎症激活后,I型干扰素(IFN-I)释放得到增强,而在M.5019a> G巨噬细胞中限制了促炎性细胞因子和黄磷脂的产生。最后,使用M.5019a> G小鼠的体内内毒素性模型显示IFN-I水平和疾病行为升高。总而言之,我们的研究确定了响应致病性mtDNA突变的先天免疫信号传导的意外失衡,对MTDNA疾病患者的病理发展具有重要意义。8。
由于对内分泌治疗、抗 HER2 治疗和化疗等标准疗法产生耐药性,乳腺癌继续对健康构成重大挑战。越来越多的研究强调乳腺癌代谢的异质性和可塑性。由于亚型差异表现出对代谢途径的偏向性,靶向线粒体抑制剂作为独立或辅助癌症疗法显示出巨大潜力。目前有多种治疗候选药物处于临床前研究和临床开放的不同阶段。然而,特定的抑制剂已被证明面临多重挑战(例如,单一代谢疗法、线粒体结构和酶等),并且可能需要与标准疗法相结合或靶向多种代谢途径。在本文中,我们回顾了线粒体代谢功能在乳腺癌细胞代谢重编程中的关键作用,包括氧化磷酸化 (OXPHOS)、三羧酸循环以及脂肪酸和氨基酸代谢。此外,我们概述了线粒体功能障碍对不同亚型乳腺癌代谢途径的影响以及针对不同代谢途径的线粒体抑制剂,旨在为线粒体抑制剂的开发提供更多思路并提高现有乳腺癌疗法的疗效。
线粒体通透性过渡孔(MPTP)是一个超分子通道,可调节跨cristae膜的溶质交换,在线粒体功能和细胞死亡中具有执行作用。MPTP对正常生理学的贡献仍然存在争议,尽管证据表明在区分祖细胞中的线粒体内膜重塑中MPTP。在这里,我们证明对MPTP电导的严格控制形成了代谢机制,因为细胞向造血身份转移。经历了内皮到山摩托型过渡(EHT)的细胞紧密控制MPTP的主要调节元件。在EHT期间,在造血性承诺之前,成熟的动脉内皮限制了MPTP活性。在细胞身份过渡后,MPTP电导恢复。在用NIM811治疗的子宫治疗中,NIM811是一种分子,该分子阻止了MPTP对通过环蛋白D(CYPD)开放的敏化,在造血前胞菌中扩增氧化磷酸化(OXPHOS),并增加了Embryo中造血性的造血性。此外,分化多能干细胞(PSC)在CYPD基因敲低PPIF后,更大的线粒体Cristae和造血活性的组织更大。相反,OPA1的敲低是适当的Cristae结构至关重要的GTPase,会诱发Cristae不规则性并损害造血。这些数据阐明了一种调节造血前体中线粒体成熟的机制,并强调了MPTP在获得造血命运中的作用。
线粒体是合成代谢和分解代谢的关键调节器,它不仅控制免疫功能和反应,还控制肿瘤的免疫原性及其对免疫攻击的敏感性(1,2)。氧化磷酸化(OXPHOS)系统是代谢的核心,由大约 90 个由核和线粒体 DNA(mtDNA)编码的结构亚基组成。mtDNA 是一种特殊的染色体,其生命周期与真核生物染色体的其余部分大不相同。其中更相关的特性包括其位于细胞核外、多倍体性质和单亲遗传。这些特性可防止重组、杂合性、孟德尔行为以及定义其余染色体中编码的基因的其他特征。因此,在正常情况下,生物体的线粒体DNA是由卵母细胞线粒体DNA的克隆扩增产生的,其拷贝数增加到由细胞类型决定的范围(从数百到数千)。因此,生物体所有线粒体DNA拷贝的序列往往相同(同质性)。或者,异质性是指单个细胞中异质性线粒体DNA序列共存。异质性自然产生于复制错误和突变线粒体DNA种类的扩增到相当大比例。线粒体DNA的另一个独特特征是它相对于位于细胞核的染色体具有更高的可变性(3)。这导致异质性水平往往在个体的寿命内增加,并且与癌症和其他与年龄相关的疾病有关。
简介线粒体是正常生理与健康的古老细胞器(Henze and Martin 2003)。他们负责细胞代谢的各个方面。氧化磷酸化系统(OXPHOS)位于线粒体内部膜上,产生了约90%的细胞能量货币,三磷酸腺苷(ATP)(Rich 2003)。此外,线粒体参与了许多其他功能 - 这些包括三羧酸周期(即krebs循环),尿素循环,糖异生和生酮发生,钙信号的酶,自适应热发生,离子稳态,脂肪酸氧化,氨基酸代谢,脂质代谢以及反应氧的生理产生(ROS)。线粒体还可以从类固醇,出血和铁 - 硫簇的生物合成中构成单个步骤,并在程序性细胞死亡中发挥作用(Voet等人2013)。此外,线粒体结构和功能在两个基因组的控制下,核和线粒体。与核基因组不同,线粒体DNA(mtDNA)是母遗传的,并且每个细胞中最多有几千份,具体取决于细胞类型(Sciaccco等人。1994,Taylor和Turnbull 2005)。 大多数序列是编码,缺乏内含子 - 外观结构,大多数基因都位于DNA分子的一条上。 1 500个线粒体蛋白中的绝大多数由核基因编码。 线粒体DNA仅针对13个结构1994,Taylor和Turnbull 2005)。大多数序列是编码,缺乏内含子 - 外观结构,大多数基因都位于DNA分子的一条上。1 500个线粒体蛋白中的绝大多数由核基因编码。线粒体DNA仅针对13个结构