HG在1911年通过Kamerlingh Onnes测得的零电阻过渡。HG在1911年通过Kamerlingh Onnes测得的零电阻过渡。
(原子...之前)电流:电线中电荷流量的速率(单位1安培,a = 1 c/s:1 a in lightbulb; ma在计算机中的Ma)•按电源定义为
纸,我们表明,这两种数量实际上存在固有的上限,这取决于金属相对于电子晶体相互作用的稳定性。我们将结果与实验数据进行了比较,并认为室温超导性完全是现实的,但仅在富含氢的化合物中。问题:“最大可能的超导t c?”自从1911年在Onnes发现超导性以来,尽管在这一领域取得了显着进展[7-12],但仍未得到答复。同时,在大气压力下,实际材料的T C在超过一百年(1911-2011)的实验经验中,在大气压力(大气压力上)的T C不超过133 k,而在高架压力(约30 GPA)处的T C不超过160 K。据信金属氢是具有最高临界温度之一的超导体[13,14]。这是因为T C与晶格振动频率成正比,在该材料中,由于氢是最轻的元素,因此在该材料中最高。不幸的是,产生金属氢需要超过450 GPA的压力[15,16],在当前实验技术的范围内进行运输测量。但是,有一种巧妙的溶液 - 将氢气与其他元素合金[17]。这提供了有效的化学压力,从而减少了产生稳定金属所需的外部压力。确实,压缩多氢化物成为自2014年和2018年发现记录超导以来的最高t C的领导者。
在1911年,Kamerlingh Onnes在实验中发现了某些称为“上跨导体”的金属,在过去[1] [1] [1] [2] [2]中发现了零电阻的状态。,如果在t> t c的超级导管的内部存在磁场,则当温度降低到t Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。 这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。 ,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。 这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。 这似乎违反了法拉第定律。 BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。 对于其余三分之二,没有公认的理论。Meissner效应令人惊讶:在1933年之前,预计超导体会排除磁场,但不会排出磁场。这是Fara-Day的定律,被称为“ Lippmann的定理” [4] [4] [5]:如果将磁场应用于零电阻材料中,则该材料将通过不让Eld渗透而产生的表面电流来反应,从而使磁场从其室内排除。,ever,法拉第定律 / lippmann的定理将预测,如果有限阻力的材料在其内部具有磁场,则将其冷却到零电阻的超导状态时,任何电流都不会流动,并且磁场将保持在内部,甚至在外部磁力源中,磁性磁性也可以恢复。这不是超导体所做的:超导的金属自发产生一个表面电流,从而从其内部排出磁场[3]。这似乎违反了法拉第定律。BCS理论既没有基于电子 - 波相互作用,于1957年由Bardeen,Cooper和Schrieffer [7]提出。对于其余三分之二,没有公认的理论。伦敦兄弟[1,6]于1935年提出的伦敦方程式提供了对超导体的磁性行为的现象描述,但并未解释supoducducdors如何设法违反法拉第定律。bcs理论提供了超导体的显微镜描述,该描述准确地描述了其许多特性,通常认为它适用于称为“常规超导体”的材料,其中包括所有超导元件和许多化合物。大约有30种不同类别的超导材料[8],其中大约三分之一被同意为“常规超导体”。该领域是开放的,以进一步进步。