逻辑模型是一个图形组织者,描述了程序或干预措施为创建短期和长期变化所做的工作。这是一个可行的计划,具有明确的步骤,将其映射到清晰识别结果并预期的长期影响。良好的逻辑模型为教育工作者提供了一个详细且实用的故事,讲述了一个程序将如何通过明确共享去向,他们将如何到达那里以及一旦到达后将展示的内容来改变。逻辑模型可以在计划组成部分和针对教育合作伙伴和资助者的预期成果上产生清晰度和特异性,在计划计划评估时提供帮助,并支持连续的改进周期(Kekahio等,2014; Lawton等,2014; Shakman&Rodriguez,2015; Stewart等,2015; Stewart等,2015; Stewart等,20221)。
近期涌现的生成式人工智能 (GAI) 系统(如 Stable Diffusion)可以根据人类提示生成图像,这引发了关于创作权、原创性、创造力和版权的争议性问题。本文重点关注创作权:谁创造了 GAI 帮助下产生的输出并应获得其功劳?现有的关于创作权的观点不一:一些人坚持认为 GAI 系统只是工具,人类提示者才是真正的创造者;其他人更愿意承认 GAI 发挥了更重要的作用,但大多数人都以全有或全无的方式看待创作权。我们开发了一种称为 CCC(以集体为中心的创造)的新观点,以改进这些现有立场。在 CCC 上,GAI 输出首先由集体创建。对创造权的主张有不同程度,取决于所涉及的各种代理和实体(包括用户、GAI 系统、开发人员、训练数据生产者等)的个人贡献的性质和重要性。重要的是,CCC 坚持认为 GAI 系统有时可以成为共同创造集体的一部分。我们详细介绍了 CCC 如何推进现有的辩论并解决涉及 GAI 的创造权争议。
SN74LVC126A 器件具有四个带三态输出的独立缓冲器,设计工作电压为 1.65 V 至 3.6 V。当输出使能 (OE) 输入为低时,相应的输出将被禁用并进入高阻抗状态。该器件还具有高容差输入,允许在混合电压系统中进行电压转换。宽工作温度范围使该器件可用于任何应用,包括恶劣或极端环境。
在生物体中,细胞感知机械力(剪切力、拉伸力和压缩力)并通过称为机械转导的过程对这些物理信号作出反应。此过程包括同时激活生化信号通路。最近主要针对人类细胞的研究表明,压缩力选择性地调节各种细胞行为,无论是在受压细胞中还是在邻近受压较少的细胞中。除了参与骨愈合等组织稳态外,压缩还与病理有关,包括椎间盘退化或实体癌。在这篇综述中,我们将总结目前关于压缩诱导的细胞信号通路及其随后的细胞输出的零散知识,包括生理和病理条件,如实体癌。
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注释 1)6.5 V 。........................................输入电压范围,V I (任何输入) −0.3 V 至 V DD + 0.3 V ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输出电压范围,V O −0.3 V 至 V DD + 0.3 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值输入电流(任何数字输入)± 10 mA 。......................。。。。。。。。。。。。。.....................峰值总输入电流(所有输入)± 30 mA .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....工作自然通风温度范围,T A :TLC1550I、TLC1551I −40 ° C 至 85 ° C ......................TLC1550M −55 ° C 至 125 ° C ................................存储温度范围,T stg −65 ° C 至 150 ° C .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........10 秒外壳温度:FK 或 FN 封装 260 °C .............。。。。。。。。。。。。。。。。。。。。。。。。..距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 ° C ..........
摘要:神经系统使用输出曲目来产生各种运动。因此,大脑必须解决如何在不同运动中发出相同输出的方式。最近的一项建议指出,网络连接性限制了神经活动的过渡,以遵循不同运动的不变规则,我们称其为“不变动态”。但是,尚不清楚不变动力学是否实际上用于驱动和概括跨移动的输出,以及它们为控制运动提供了什么优势。使用将运动皮层活性转化为神经假体光标输出的脑机界面,我们发现相同的输出是由不同运动中不同活动模式发出的。这些不同的模式然后根据不变动态模型过渡,从而导致模式驱动不同的未来输出。最佳控制理论揭示了这种不变动态的使用减少了控制运动所需的反馈输入。我们的结果表明,大脑使用不变动态来概括跨运动的输出。
Yoshimitsu Nakanishi,1,2,3,4,18 Mayuko Izumi,1,2,2,3,4,18 Hiroaki Matsushita,3,5 Yoshihisa koyama,4,6,6,6 diego diez,7 dieoge diez,8 hyota takamatsu,8 hyota takamatsu,1,2 shohei koyama,1 shehei koyama,1 yumay 1,2 yumay 1,2 yum 1,2 Yumy 1,2 Yum.2 Yumiik,1,1,2 Yuta Yamaguchi,1,2 Tomoki Mae,1 Yu Noda,1 Kamon Nakaya,1 Satoshi Nojima,9 Fuminori Sugihara,10 Daisuke Okuzaki,4,11,11,12,12,15,15,15 Mashito,13 ,19, * 1呼吸医学和临床免疫学系,大阪大学,大阪大学565-0871,日本2号免疫病理学系,世界首要国际研究中心免疫研究中心倡议倡议中心研究中心(WPI-IFREC) Chugai Pharmaceutical Co. Ltd.研究部门有限公司,在247-8530,日本6神经科学与细胞生物学系,大阪大学医学研究生院,大阪565-0871,日本7成瘾研究单位,大阪精神病学研究中心,大阪医学中心,大阪大学,osaka apai Osaka 565-0871,日本10生物功能成像实验室,意愿单细胞基因组学),WPI-IFREC,大阪大学,大阪大学565-0871,日本12基因组信息研究中心,研究所研究所(RIMD),大阪565-0871,OSAKA 13 565-07,大阪大学565-0871,日本15号教育与研究中心(CIDER),大阪大学,大阪565-0871 NOLOGY(AMED- CRIEST),大阪大学,大阪大学565-0871,日本日本17号高级模态和DDS(CAMAD),Osaka 565 CORS