基于核酸调节细胞活性的治疗方法最近引起了人们的注意。这些分子来自复杂的生物技术过程,需要有效的制造策略,高纯度和精确的质量控制才能用作生物制药。基于核酸的生物治疗剂制造的最关键和最耗时的步骤之一是它们的纯化,这主要是由于提取物的复杂性。在这项研究中,描述了一种简单,有效且可靠的方法,用于分离和阐明复杂样品的质粒DNA(pDNA)。该方法基于使用原始碳纳米管(CNT)的选择性捕获RNA和其他杂质的选择性捕获。研究了带有不同直径的多壁CNT(MWCNT),以确定其吸附能力,并解决其相互作用和区分核酸之间的能力。结果表明,MWCNT优先与RNA相互作用,并且较小的MWCNT具有较高的吸附能力,如较高的特定表面积所预期的那样。总体而言,这项研究表明,与初始水平相比,MWCNT显着降低了杂质(即RNA,GDNA和蛋白质)的水平约为83.6%,从而使溶液中澄清的pDNA在整个恢复过程中保持稳定性。此方法促进了治疗应用中pDNA的预纯化。
大学生物医学工程与生物技术教授,具有遗传工程、免疫学和生物信息学跨学科研究经验。专注于下一代候选疫苗的临床前和临床开发。在 IAU 的 IRMC 建立了核酸疫苗实验室 (NAVL) 和临床生物制造部门 (CBMU)。领导了几种针对新出现和重新出现的病毒(如 MERS-CoV、SARS-CoV-2、寨卡病毒和流感病毒)的 mRNA 和 pDNA 候选疫苗的开发。作为首席研究员和临床试验经理,我全身心投入实现 pDNA 候选疫苗临床开发的目标。熟悉 GMP 制造、ICH 指南以及与良好临床实践和临床试验相关的 EMA/FDA/SFDA 指南。高度致力于研究、创新和教学的卓越性。
Northx Biologics提供了一项全面的PDNA服务,从R&D等级到由EMA批准的顶级现代设施生产的GMP质粒。为了确保在阶段之间平稳地传递过程和测试,尽管灵活,但在质量等级之间保持一致。
提取核酸是任何分子生物学研究的起点,因此被认为是一个关键过程。质粒被认为是原核生物进化的主要驱动力,因为它们可以在人群之间迁移,使其成为侧向DNA转移和微生物战争的有效药物。质粒的重要性超出了微生物的进化,因为它们被广泛用作基础研究(例如随机诱变)的遗传工程载体,以及在生物技术学(例如胰岛素生产),合成生物学,农业,农业,农业工程(例如,Bioss的遗传工程)和医学(E. g.g.,g。由于质质剂DNA(pDNA)的有效生产方法的需求已响应于基因治疗和疫苗的快速进步,因为与病毒载体相关的有利安全问题,因此pDNA在基因治疗和疫苗中的快速进步。Himedia的Hipura®用于质粒DNA纯化的预填充墨盒(MIDIPREP)提供了高产量的质粒DNA和无麻烦的自动化溶液,以提取。
提取核酸是任何分子生物学研究的起点,因此被认为是一个关键过程。质粒被认为是原核生物进化的主要驱动力,因为它们可以在人群之间迁移,使其成为侧向DNA转移和微生物战争的有效药物。质粒的重要性超出了微生物的进化,因为它们被广泛用作基础研究(例如随机诱变)的遗传工程载体,以及在生物技术学(例如胰岛素生产),合成生物学,农业,农业,农业工程(例如,Bioss的遗传工程)和医学(E. g.g.,g。由于质质剂DNA(pDNA)的有效生产方法的需求已响应于基因治疗和疫苗的快速进步,因为与病毒载体相关的有利安全问题,因此pDNA在基因治疗和疫苗中的快速进步。从细菌细胞中纯化的质粒DNA可以用内毒素污染至不同的扩展,具体取决于纯化方法。报告表明,内毒素可以降低许多真核细胞系中的转染效率。HIMEDIA的HIPURA®无内毒素质粒MIDIPREP DNA纯化试剂盒的预填充墨盒可提供无内毒素,高产量质粒DNA和无麻烦的自动化溶液,以萃取。
虽然单克隆抗体(mAb)是一类重要的药品类别,但成本,复杂性,尤其是递送仍然存在重大问题:克服经常注入抗体的概念是一个值得的目标。一种有吸引力的方法是将非整合DNA直接传递给肌肉组织,使患者充当自己所谓的“蛋白质工厂”。使用脂质纳米颗粒(LNP)和病毒载体进行了这种概念的演示,但是这些传递方法面临着重大挑战,包括肝外交付不良,货物兼容性,安全性,可重复性和成本。聚合物纳米颗粒(PNP)提供了解决这些问题的解决方案,但是面临着自己的挑战,例如大量可能的聚合物结构和多体式配方条件。然而,机器学习,材料信息学和高通量化学合成技术的进步为解决这些挑战提供了有效探索聚合物设计空间的基础。我们的Sayer TM平台利用了质粒DNA(PDNA)的大量计算数据集 - 聚合物相互作用来促进靶向剂的发现和通过深度学习的发现,并推动对各种靶向组织的新型PNP的发现。在这项工作中,我们证明了设计PNP的能力,可以为PGT121提供PDNA编码,PGT121是一种广泛中和的抗HIV抗体,该抗体靶向HIV-1 Invelope糖蛋白上的V3 GlyCan依赖性表位位点。Sayer设计的聚合物与PGT121质粒形成小稳定的PNP。此外,我们表明我们可以通过延长来提高抗体水平和耐用性。与其他状态的DNA降低车辆相比,转染后1天,在转染后1天表现出强血清PGT121蛋白水平。更重要的是,纳米PNP的肌内递送启用了大于1.0 µg/ml峰蛋白表达水平,注射后> 56天,有意义的,耐用的表达水平。在肌肉内输送PNP时,可以看到较低剂量和较低的N/P比的一般趋势。这些参数与聚合物结构分开,提供了不同的机制,可以使用机器学习技术优化体内递送性能。可以将概念扩展到其他抗体,蛋白质或酶的连续产生,这表明PDNA通过PNPS作为治疗方式具有广泛的适用性。最后,我们强调,通过安全有效的PNP在体内提供DNA编码的分泌蛋白的策略可能适用于广泛的其他疾病方式。
此次地震也将成为首次在实际操作中采用技术(尤其是高分辨率图像)的地震之一。几乎从灾难一开始,高分辨率卫星图像就已可用,可以首次看到地震造成的破坏。几天后,超高分辨率航空图像可用,可以更详细地了解此次地震造成的破坏。这些宝贵的数据集使一小队遥感专家能够提供过去十年中最为准确的建筑物损坏评估之一。此外,这些信息在相对较短的时间内(地震发生后两个月内)以建筑物损坏评估报告的形式与海地政府官员共享,以支持灾后需求评估 (PDNA) 和恢复框架。
摘要:开发了一种基于微腔纤维马赫德 - Zhhnder干涉仪的新型无标签光纤生物传感器,并实际上证明了用于DNA检测的。使用偏置剪接标准通信单模纤维(SMF)制造生物传感器。传感器的光路径受偏置开放腔中液体样品的影响。在实验中,在折射率(RI)测量中实现了-17,905 nm/riU的高灵敏度。在此基础上,探针DNA(pDNA)使用APTES固定在传感器表面上,从而实现了捕获的互补DNA(cDNA)样品的实时监测。实验结果表明,生物传感器的高灵敏度为0.32 nm/fm,检测限为48.9 AM。同时,传感器具有高度可重复和特定的性能。这项工作报告了易于制造,超敏感和无标签的DNA生物传感器,该生物传感器在医学诊断,生物工程,基因识别,环境科学和其他生物领域中具有重要的潜在应用。
癌症被认为是控制细胞增殖、分化和体内平衡的基因突变的复杂恶性后果,因此肿瘤治疗极具挑战性。迄今为止,各种载货分子,包括核酸药物(pDNA、miRNA 和 siRNA)、治疗药物(阿霉素、紫杉醇、柔红霉素和吉非替尼)和成像剂(放射性同位素、荧光染料和 MRI 造影剂)已被视为临床应用的潜在药物。然而,由于肿瘤异质性和多种药物耐药性,非单一治疗药物可以产生令人满意的临床效果,而基于纳米技术的联合治疗正在成为增强抗癌效果的重要先进模式。本综述汇集了当前以纳米药物为基础的联合递送小分子药物和核酸进行抗癌治疗的先进发展。此外,明确介绍了其优越性,并详细讨论了克服临床挑战的障碍。最后,展示了未来药物和核酸联合治疗肿瘤的合理方向。