Preferred Networks, Inc. (PFN) 以垂直整合的方式开发先进的软件和硬件技术,涵盖从芯片、超级计算机、生成式 AI 基础模型到解决方案和产品的整个 AI 价值链。PFN 于 2014 年 3 月在东京成立,其技术已应用于制造、交通运输、医疗保健、娱乐和教育等一系列行业。PFN 的 MN-3 是一款由其 MN-Core™ AI 处理器驱动的超级计算机,在 2020 年和 2021 年三次荣登 Green500 排行榜,成为全球最节能的超级计算机。PFN 拥有材料发现、机器人和基础模型子公司。https://www.preferred.jp
关于 Preferred Networks Preferred Networks (PFN) 成立于 2014 年 3 月,旨在开发深度学习、机器人技术和其他先进技术的实用、现实应用。PFN 的业务领域包括交通运输、制造、生命科学、机器人、工厂优化、材料发现、教育和娱乐。2015 年,PFN 开发了开源深度学习框架 Chainer™。配备 MN-Core™ 深度学习处理器的 PFN 的 MN-3 超级计算机在 2020 年和 2021 年三次荣登 Green500 榜单榜首。https://www.preferred.jp/en/
摘要 本研究获得了基于铁电磁 PbFe 1/2 Nb 1/2 O 3 粉末和铁氧体粉末(锌镍铁氧体,NiZnFeO 4 )的多铁性(铁电-铁磁)复合材料(PFN-铁氧体)。陶瓷 PFN-铁氧体复合材料由 90% 粉末 PFN 材料和 10% 粉末 NiZnFeO 4 铁氧体组成。陶瓷粉末采用传统工艺方法合成,采用粉末煅烧,而复合粉末的致密化(烧结)采用两种不同的方法进行:(1)自由烧结法(FS)和(2)放电等离子烧结(SPS)。对复合 PFN-铁氧体样品进行了热测试,包括直流电导率和介电性能。此外,还在室温下测试了复合材料样品的 XRD、SEM、EDS (能量色散谱) 和铁电性能 (磁滞回线)。在工作中,对用两种方法获得的 PFN-铁氧体复合材料样品的测量结果进行了比较。多铁性陶瓷复合材料的 X 射线检查证实了来自复合材料铁电 (PFN) 基质的强衍射峰以及由铁氧体组分引起的弱峰。同时,研究表明不存在其他不良相。这项研究的结果表明,通过两种不同的烧结技术 (自由烧结法和放电等离子烧结技术) 获得的陶瓷复合材料可以成为功能应用的有前途的材料,例如,用于磁场和电场传感器。