摘要:小儿高级神经胶质瘤(PHGGS)是神经胶质瘤的致命和异源亚组,为此,创新治疗的发展是紧迫的。高通量分子技术的进步已经揭示了这些疾病的关键表观遗传成分,例如组蛋白3的K27M和G34R/V突变。然而,DNA压实的修改本身并不足以驱动这些肿瘤。在这里,我们回顾了由H3突变引起的表观基因组重新布线的PHGGS子类别的分子特异性,以及随后与转录信号传导途径的肿瘤相互作用,从最终导致Gliomageneses的发展程序中相互采用的转录信号通路。了解在这些肿瘤中每个细胞环境中的转录和表观遗传变化如何协同化可以允许识别新的致命弱点的高跟鞋,从而突出新的杠杆来改善其治疗管理。
编码基因的组蛋白中的体细胞突变导致表观遗传景观的严重改变。弥漫性内在的蓬托胶质瘤(DIPG)是儿科高级神经胶质瘤(PHGG),是治疗最具挑战性的癌症之一,只有1%的生存5年。由于脑干中的位置,DIPGs很难切除并迅速变成致命疾病。超过80%的DIPGS赋予编码组蛋白3变体(H3.3或H3.1/H3.2)的基因中的突变,并在27(H3K27M)的位置将赖氨酸替代为蛋氨酸取代。这会导致H3K27三甲基化的全球降低,H3K27乙酰化增加以及基因表达的广泛致癌变化。表观遗传修饰的药物出现为有希望的候选DIPG,其中组蛋白脱乙酰基酶(HDAC)抑制剂在临床前和临床研究中占据主导地位。但是,一些数据显示DIPG对最研究的HDAC抑制剂Panobinostat的抗性不断发展,并强调了进一步研究其作用机理的必要性。一项新的有力研究线探索了可以靶向表观遗传诱导的DIPG染色质变化并增强单个药物的抗癌反应的多种抑制剂的同时使用。在这篇综述中,我们总结了针对旨在靶向表观遗传失调的表达H3K27M的PHGG的治疗方法,并突出了有希望的组合药物治疗。我们评估了PHGGS临床试验中已经在临床试验中的表观遗传药物的有效性。对H3K27M-表达PHGG的表观遗传脆弱性的不断扩展的理解提供了新的特定于肿瘤的靶标,为治疗提供了新的可能性,并希望为这种致命的疾病提供预防。
刺猬因子 (SHH) 激活和肿瘤抑制蛋白 p53 (TP53) 突变、SHH 激活和 TP53 野生型以及非 WNT/非 SHH(第 3 组和第 4 组)],其中第 3 组 MB 在所有亚组中预后最差,TP53 突变状态是 SHH 激活 MB 中最重要的风险因素 (4-6)。同样,儿童低级别胶质瘤 (PLGG) 在 BRAF 基因 (B-Raf 原癌基因或 v-Raf 鼠肉瘤病毒癌基因同源物 B1) 中存在不同的异常,这提供了有关肿瘤表型以及患者总体生存的信息 (7,8)。此外,儿童高级别胶质瘤 (PHGG) 患者的预后因编码组蛋白变体 H3.3 (H3F3A) 和 H3.1 (HIST1H3B) 的基因突变而不同 (9)。鉴于这些分子差异的临床意义,最近的临床试验旨在确定驱动突变和其他生物标志物,以便进行靶向治疗。本综述介绍了最近的文献,并重点介绍了利用
3 Oxford Immune Algorithmics, Reading, UK ABSTRACT This study employs systems medicine approaches, including complex networks and machine learning- driven discovery, to identify key biomarkers governing phenotypic plasticity in pediatric high-grade gliomas (pHGGs), namely, IDHWT glioblastoma and H3K27M diffuse intrinsic pontine glioma (DIPG).通过整合单细胞转录组学和组蛋白质量细胞术数据,我们将这些侵略性肿瘤概念化为复杂的自适应生态系统,该系统由被劫持的oncofetal发育程序和病理吸引力动力学驱动。Our analysis predicts lineage-plasticity markers, including KDM5B (JARID1B), ARID5B, GATA2/6, WNT, TGFβ, NOTCH, CAMK2D, ATF3, DOCK7, FOXO1/3, FOXA2, ASCL4, PRDM9, METTL5/8, RAP1B, CD99, RLIM, TERF1, and LAPTM5, as drivers of细胞命运控制论。此外,我们确定了内源性生物电特征,包括Grik3,Grin3,Slc5a9,Nkain4和KCNJ4/6,是潜在的重编程靶标。此外,我们验证了先前发现的可塑性基因,例如PDGFRA,EGFR靶标,OLIG1/2,FXYD5/6,MTSSS1,SEZ6L,MTRN2L1和SOX11,证实了我们复杂系统方法的鲁棒性。此系统肿瘤学框架为精确医学提供了有前途的途径,通过指导由单细胞多摩学告知的组合疗法来优化患者的结果,并以PHGG表型可塑性为治疗性脆弱性。此外,我们的发现表明肿瘤表型可塑性(即过渡疗法)和PHGG生态系统中疾病的表观遗传重编程性能朝向稳定的,转分化的状态。因此,了解关键字:小儿神经胶质瘤;表型可塑性;癌症多组学;数据科学;系统医学;精度肿瘤学。引言小儿高级神经胶质瘤(PHGGS)代表致命疾病,没有任何精确诊断,有效的治疗或预防(Swanton等,2024)。这些侵略性肿瘤破坏了发育过程和组织稳态,导致形态发生,对治疗的抵抗力和免疫逃避(Senft等,2017; Jessa等,2019)。对其病理学的中心是表型可塑性 - 细胞在谱系身份之间适应响应微环境压力的能力。This plasticity arises from epigenetic dysregulation, such as oncohistone mutations like H3K27M (H3F3A) and driver mutations like TP53, ACVR1, etc., which destabilize chromatin structure, trapping cells in metastable, multipotent states and impairing their differentiation hierarchy (Shpargel et al., 2014; Paugh et al., 2011; Jessa et al., 2019)。实际上,这些塑料状态促进了肿瘤的进展和耐药性作为新兴行为,从而创造了不稳定的生态系统。