所有这些都是互联网草案;尚未最终确定 • TLS 1.3 中的混合密钥交换 [ 链接 ] • 互联网 X.509 公钥基础设施:ML-DSA 的算法标识符 [ 链接 ] • 互联网 X.509 公钥基础设施 - 基于模块格的密钥封装机制 (ML-KEM) 的算法标识符 [ 链接 ] • 用于互联网 PKI 的复合 ML-DSA [ 链接 ] • 用于编码不同配对证书的机制 [ 链接 ] • 用于协议内多重身份验证的相关证书 [ 链接 ]
2024 年 9 月 9 日至 13 日,TÜBİTAK 基础科学研究所 (TBAE) 将举办“2024 年可编程量子光子计算机秋季学校 (TBAE PQPC'24)”。该学校旨在为有志于攻读量子光子计算研究生课程的学生以及已经在该领域积极工作的学生提供必要的理论和实验背景。秋季学校将涵盖一系列主题的基础理论和实验课程,包括量子光学、光子计算机组件、量子信息论、干涉仪和单光子源、量子态和测量、量子算法、光电探测器和量子态检测、量子误差校正、线性光学量子计算、量子通信和纠缠、基于测量的量子计算、可编程光子量子计算机 (PQC)、PQC 的设计和仿真步骤、光子集成电路 (PIC)、PIC 中的非线性光学效应、量子互连和网络以及表征 PIC 的技术。这些课程将由国内外各大学的顶尖讲师授课。您可以申请参加 TBAE PPQC'24 秋季学校,以面对面 (F2F,限制从申请者中选出的 50 人) 或通过 Zoom 在线参与。
摘要 - 采用抗量子的加密网络协议或量词后加密术(PQC)的问题对于使量子计算民主化至关重要。问题是紧迫的,因为实用的量子计算机将在未来几十年中打破经典的加密。过去的加密数据已经收集,可以在不久的将来被删除。采用后量子加密的主要挑战在于算法复杂性和硬件/软件/网络实现。现有网络基础设施将如何支持量子后加密术的宏伟问题仍未得到解答。本文描述了:i)在伊利诺伊大学Urbana-Champaign的NA型超级计算应用中心(NCSA)放置的新型量词后加密(PQC)网络仪器的设计; ii)关于PQC采用率的最新结果(安全壳 - SSH - SSH,运输层安全 - TLS等)。); iii)在关键科学应用中实施PQC的现状(例如Openssh或Scitokens); iv)抗量子的挑战; v)讨论潜在的新攻击。这是在国家规模的超级计算中心和织物测试台上对PQC采用的第一个大规模测量。我们的分析确定了迁移当前应用的途径,以备量子。我们的结果表明,只有Openssh和Google Chrome已成功实施了PQC,并获得了NCSA的OpenSSH连接的初始采用率为0.029%(20,556,816中的6,044个)来自主要的Internet Service Provers或诸如Oarnet,Google fiber liber wepp and,goog fiber webt(例如,Unigre Internet Service Service Provers)和U.Aarnet,Google fiber webs(U.S.) (瑞典),2023 - 2024年的总体采用率同比增长。
《国家网络安全战略》包括一项为后量子时代做好准备的战略目标,敦促私营部门效仿美国政府 (USG) 的模式,优先将易受攻击的公共网络和系统过渡到基于抗量子密码的环境,并制定互补的缓解策略,以在已知和未知的未来风险和威胁面前提供加密灵活性。正如《国家安全备忘录 10 (NSM-10)》中所述,“提升美国在量子计算领域的领导地位,同时降低易受攻击的密码系统的风险”,当密码分析相关的量子计算机可用时,它们可能会危及民用和军用通信,破坏关键基础设施的监督和控制系统,并破坏大多数基于互联网的金融交易的安全协议。正如 NSM-10 所指出的,美国必须优先考虑及时、公平地将加密系统过渡到抗量子加密技术,目标是到 2035 年尽可能地降低量子风险。去年,美国国家标准与技术研究所 (NIST) 选择了四种旨在抵御量子计算机攻击的算法。NIST 计划在 2024 年底前完成使用这些算法的标准。推动整个生态系统采用新兴的 PQC 标准,甚至推动支持关键基础设施和保护美国敏感数据(包括存储数据)的大量公共和私营部门组织采用这些标准,将是一项复杂的工作。这将需要服务提供商和硅片解决方案公司之间的协调,原始设备制造商将需要集成这些解决方案。此外,它还需要标准和开源社区做出更广泛的努力,以支持集成到关键协议中以及创建生产级开源代码、库和副驾驶员。采用这些技术可能需要对硬件和软件加密技术进行昂贵的更新。此外,相关利益相关者必须意识到这些标准以及采用这些标准的必要性。为了支持国家为后量子时代做好准备,NSTAC 将确定关键基础设施提供商采用 PQC 标准的障碍,并就如何在未来十年内减少这些障碍以迎接量子计算的到来提供建议。为了提供这些建议,该研究将考虑过去技术转型中的经验教训,并包括与关键基础设施提供商、USG 机构和非联邦公共部门的对话
对于基于哈希的签名,人们认为系统的安全性基于对称哈希函数的可计算性这一经过充分研究的难度。这些方法通常使用哈希树,这是一种特殊的过程,可以为多个一次性签名分配一个公共验证密钥。因此,这样的系统是有状态的,即签名的创建者必须在每次操作后更新其签名密钥,并且在创建密钥时已经确定了最大签名数量。这些程序包括已经标准化的扩展 Merkle 签名方案 (XMSS) 和 Leighton Micali 系统 (LMS)。基于哈希函数的无状态签名系统也是可行的,但创建签名需要更多的计算时间,并且必须使用更长的签名。无状态签名系统的一个例子是 SPHINCS [7]。
5G算法”,其中分析了量子计算的威胁到5G 在2023年3月发布了“未来5G网络和应用程序垂直领域的PQC研究”中,它决定在NIST PQC标准发布后进一步研究该主题。。5G算法”,其中分析了量子计算的威胁到5G在2023年3月发布了“未来5G网络和应用程序垂直领域的PQC研究”中,它决定在NIST PQC标准发布后进一步研究该主题。本报告分析了5G体系结构中使用的各种安全算法的量子威胁。
•SP 800-56A:DIFFIE-HELLMAN,ECDH•SP 800-56B:RSA加密•FIPS 186:RSA,DSA,EDDSA和ECDSA签名,所有这些都容易受到来自(大型)量子计算机的攻击。
摘要 — 区块链技术可确保关键应用(包括具有嵌入式系统的物联网)的可追溯性、透明度和冗余性。然而,对公钥加密 (PKC) 的依赖使区块链容易受到量子计算威胁。本文通过将后量子密码 (PQC) 集成到区块链框架中,解决了对量子安全区块链解决方案的迫切需求。利用 NIST PQC 标准化过程中的算法,我们旨在加强区块链的安全性和弹性,特别是对于物联网和嵌入式系统。尽管 PQC 非常重要,但它在针对嵌入式环境定制的区块链系统中的实现仍未得到充分探索。我们提出了一种量子安全区块链架构,评估了各种 PQC 原语并通过 Falcon 的公钥恢复等技术优化交易规模,将交易规模减少了 17%。我们的分析表明 Falcon-512 是嵌入式环境中量子安全区块链最合适的算法,而 XMSS 是一种可行的有状态替代方案。然而,对于嵌入式设备,Dilithium 的每秒交易数 (TPS) 比 Falcon 更高,这主要是因为 Falcon 在 ARM CPU 上的签名性能较慢。这凸显了签名时间是 PQC 集成到嵌入式区块链中的关键限制因素。此外,我们将智能合约功能集成到量子安全区块链中,评估 PQC 对智能合约认证的影响。我们的研究结果证明了在嵌入式系统中部署量子安全区块链解决方案的可行性和实用性,为强大且面向未来的物联网应用铺平了道路。
THE VAULT 第 40 期 由柏林 Krowne Communications GmbH 出版。 出版商:Krowne Communications GmbH,Kurfürstendamm 194, 10707 Berlin 主编:Steve Atkins 艺术总监:Nina Eggemann 合伙人导演:Yvonne Runge 编辑贡献:Steve Atkins、Daniela Previtali、Klaus Schmeh、Robert Bach、Lutz Richter 照片:ISTOCKPHOTO、INFINEON TECHNOLOGIES、WIBU-SYSTEMS、MÜHLBAUER、EVIDEN、FREEPIK AI IMAGE EDITOR、KROWNE COMMUNICATIONS 版本:2024 年 7 月。 未经出版商书面明确许可,不得全部或部分复制本出版物的任何部分。 所有产品版权和商标均归其各自所有者所有。所有产品名称、规格、价格和其他信息在印刷时均正确无误,但如有更改,恕不另行通知。出版商对虚假或误导性信息或遗漏不承担任何责任。
MarkusBläser,Zhili Chen,Dung Duong,Antoine Joux,Tuong Nguyen,Thomas Plantard,Youming Qiao,Willy Susilo和Gang Tang:“基于团体行动的数字签名:QROM安全和戒指签名”