摘要:光系统Ⅱ是叶绿体的重要组成部分,其修复过程对缓解光抑制至关重要,对提高植物的抗逆性和光合效率具有重要意义。致死基因被广泛应用于基因编辑的效率检测和方法改进。本研究在油菜中发现了一个自然发生的致死突变体7-521Y,该突变体子叶黄化,受双隐性基因cyd1和cyd2控制。通过全基因组重测序和图位克隆相结合的方法,利用15 167个黄化个体将CYD1精细定位到29 kb的基因组区域上。通过对转基因进行共遗传分析和功能验证,确定BnaC06.FtsH1为目的基因;它编码一个丝状温度敏感蛋白H 1 (FtsH1)水解酶,能够降解拟南芥中受损的PSII D1。BnaC06.FtsH1在甘蓝型油菜的子叶、叶片和花中表达量较高,且定位于叶绿体中。此外,在7-521Y中,FtsH上游调控基因EngA的表达上调,D1的表达下调。FtsH1和FtsH5的双突变体在甘蓝型油菜中是致死的。通过系统发育分析发现,在芸苔属植物中FtsH5的丢失,剩下的FtsH1是PSII修复周期所必需的。CYD2可能是甘蓝型油菜A07染色体上FtsH1的同源基因。我们的研究为致死突变体提供了新的见解,其发现可能有助于提高油菜 PSII 修复周期的效率和生物量积累。
摘要 光系统 II (PSII) 利用红光的能量分解水并还原醌,这是一个基于叶绿素 a (Chl-a) 光化学的耗能过程。两种蓝藻 PSII 可以使用叶绿素 d (Chl-d) 和叶绿素 f (Chl-f) 进行相同的反应,但需要使用能量较低的远红光。Acaryochloris marina 的 PSII 的 35 个 Chl-a 中除了一个以外全部被 Chl-d 取代,而兼性远红光物种 Chroococcidiopsis thermalis 的 PSII 只有 4 个 Chl-f、1 个 Chl-d 和 30 个 Chl-a。从生物能量学角度考虑,远红光 PSII 预计会失去光化学效率和/或对光损伤的恢复能力。在这里,我们比较了 Chl-f-PSII、Chl-d-PSII 和 Chl-a-PSII 中的酶周转效率、正向电子转移、逆反应和光损伤。我们表明:(i) 所有类型的 PSII 都有相当的酶周转效率;(ii) Chl-d-PSII 受体侧的能隙改变有利于通过 P D1 + Phe - 重新填充进行重组,导致单线态氧产生增加,并且与 Chl-a-PSII 和 Chl-f-PSII 相比对高光损伤更敏感;(iii) Chl-f-PSII 中受体侧的能隙经过调整以避免有害的逆反应,有利于对光损伤的恢复而不是光利用效率。结果可以通过电子转移辅因子 Phe 和 QA 的氧化还原调节差异以及与主要电子供体共享激发能的叶绿素的数量和布局差异来解释。 PSII 通过两种不同的方式适应较低的能量,每种方式都适合其特定的环境,但具有不同的功能惩罚。
4.1。Evolution of the structural analysis of PSII using single particle electron microscopy (1995- 2000) ............................................................................................................................................ 20
建议在水箱混合物中使用多种有效的除草剂模式,以缓慢耐水性(Amaranthus tuberculatus)的耐药性演化,这可能会允许种植者延长当前除草剂的使用。在光系统II(PSII)和HPPD抑制剂之间已经报道了1个协同的除草剂相互作用,最常见于除草剂阿雷津加上术。1,2,3,4吡啶酸酯是6组PSII抑制剂 - 组氨酸215粘合剂,其结合位点与阿特拉津不同。对吡啶甲酯和HPPD抑制剂之间的相互作用进行了有限的研究。
负责该磁盘在PBS核心底部的突出。此突出与PSII的细胞质侧的孔非常吻合,并在PBS和PSII之间形成紧密相互作用(Chang等人2015; Krasilnikov等。2020)。考虑了PS II的近表面叶绿素的垂体层的厚度以及该突出所产生的间隙以及从PBS核心向类囊体膜暴露的无定形PBLCM回路,该模型最有可能提供的距离为42Å(Krasilnikov等。2020)在这里使用了从PBS到PS II的能量转移的机会。仅来自PBLCM的能量转移的功能的标准是根据计算确定并在实验中确定的转移时间的一致。
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用
抽象的Zoysia Japonica(Z. Japonica)是一个暖季的多年生草皮,通常在美国东南部生长,因为其投入需求相对较低,并且对干旱,阴影和盐度的一般耐受性。改善冰冻耐受性对于Z.Japonica至关重要,因为它可以扩展北部边界,即该物种能够生长。为了加深我们对Z. Japonica冻结耐受性的分子基础的理解,使用转录组方法来识别涉及冷适应的基因。'Meyer',冻结耐受品种和“维多利亚”,冻结易感品种受到冷适应和非冷入适应处理,以确定差异表达基因(DEG)的数量。响应冷适应,总共上调了4,609度,在“ Meyer”中下调了3,605度,而在“ Victoria”中,3,758度上调了3,758度,3,516度下调。GO和KEGG富集分析显示了几种不同的途径和生物学过程,包括光合作用,跨膜转运和植物激素信号转导。将这些信息与先前关于蛋白质组学和QTL映射的研究相结合,几个候选基因被确定与不同研究(例如LEA,CIPK,POD,HSF,HSF,HSP,HSP,MPK,MPK,PSII和多个转录因子)的耐寒和冻结耐受性有关。这项研究中鉴定出的候选基因表明,可能成为冻结Z. japonica的未来选择工作的目标。