在过去的几十年中,空中交通量显著增加。空中交通管制 (ATC) 需要仔细协调高交通负荷,以满足严格的安全要求。为了提供高质量的 ATC,其运营商依赖于雷达传感器收集的信息。经典的主监视雷达 (PSR) 方法需要大量昂贵且耗能的地面站。为了减少主雷达站的数量,ATC 组织评估了非依赖性使用二次监视雷达 (SSR) 应答器进行飞机定位。自动相关监视广播 (ADS-B) 基于 SSR 模式 S 协议。与常规 SSR 系统不同,SSR 系统主要根据地面站的事先请求广播无线电报,而 ADS-B 使用基于 Aloha 协议随机触发的自发应答器广播。ADS-B 不仅提供高度和身份信息,还传输机载导航系统收集的运载飞机位置信息。此外,还提供地速、航向和许多其他信息。随着配备 ADS-B 的飞机数量不断增加(目前配备 S 模式的飞机中有 65% [1]),该系统在为 ATC 显示器提供信息方面越来越有吸引力。根据实地研究 [2],大多数 ADS-B 应答器都在广播可靠的定位信息,其中位置的均方根误差 (RMSE)
1 加利福尼亚大学旧金山分校威尔神经科学研究所神经病学系,加利福尼亚州旧金山 94110,美国;Prashanth.Ramachandran@ucsf.edu (PSR);Michael.Wilson@ucsf.edu (MRW);awapniarski@gmail.com (AW) 2 日内瓦大学医学院日内瓦大学医院儿科传染病科,瑞士日内瓦 1205;Gaud.Catho@hcuge.ch 3 日内瓦大学医院儿科、妇产科普通儿科科室儿科免疫学和疫苗学科,瑞士日内瓦 1205;Geraldine.BlanchardRohner@hcuge.ch 4 约翰霍普金斯大学医学院神经病学系,马里兰州巴尔的摩 21205,美国; nschies1@jhmi.edu 5 科罗拉多大学医学院神经病学系,科罗拉多州奥罗拉 80045,美国;randall.cohrs@cuanschutz.edu 6 索邦大学皮蒂萨尔佩特里埃医院国家疱疹病毒参考中心病毒学系,巴黎 75013,法国;david.boutolleau@aphp.fr (DB);sonia.burrel@aphp.fr (SB) 7 藤田卫生大学医学院儿科,爱知县丰明 470-1192,日本;tetsushi@fujita-hu.ac.jp 8 爱荷华大学儿科传染病/病毒学系,爱荷华州爱荷华市 52242,美国;ethan-heusel@uiowa.edu (EHH); john-carpenter@uiowa.edu (JEC); wallen-jackson@uiowa.edu (WJ) 9 爱荷华大学病理学系,爱荷华州爱荷华市 52242,美国;bradley-ford@uiowa.edu * 通信地址:charles-grose@uiowa.edu
摘要候选PEVATRON MGRO J1908 + 06,显示了超过100 tev的硬光谱,是银河平面中最特殊的射线源之一。其复杂的形态和一些可能与非常高的能量(VHE)发射区域相关的可能对应物,无法区分-Ray发射的辐射性和缓慢性。在本文中,我们说明了MGRO J1908 + 06的新的多波长分析,目的是阐明其性质及其超高能量发射的起源。我们对12个CO和13 CO分子线发射进行了分析,证明存在与源区域空间相关的密集分子云的存在。我们还分析了10 GEV和1 tev nding具有硬光谱的对应物之间的12年fermi -large区域望远镜(LAT)数据(1.6)。我们对XMM – Newton数据的重新分析使我们能够对此来源对X射线UX进行更严格的约束。我们证明,一个加速器无法解释整个多波长度数据集,无论它是加速质子还是电子,但是需要一个两区模型来解释MGRO J1908 + 06。VHE发射似乎很可能是由PSR J1907 + 0602在南部地区提供的TEV脉冲星风星云,以及北部地区的Supernova Remnant G40.5 0.5与分子云之间的相互作用。
1 Global Science Team, World Wildlife Fund, Washington, DC, United States, 2 Lawrence Berkeley National Laboratory, Berkeley, CA, United States, 3 PSR Energy Consulting and Analytics, Rio de Janeiro, Brazil, 4 Natural Capital Project and the Woods Institute for the Environment, Stanford University, Stanford, CA, United States, 5 School of Earth, Environmental, and Marine Sciences, The University of Texas Rio美国德克萨斯州爱丁堡的格兰德山谷,6北卡罗来纳州,北卡罗来纳州夏洛特,美国7生态与进化生物学系,美国纽约州康奈尔大学,美国纽约州康奈尔大学,8 WWF-亚洲Pacii-paciifinber,Ho Chi Minh City,Ho Chi Minh City,vietnam,vietnam,vietnam,vietnam,vietnam,9 Confio and Montreering andirorricer,QC,QC,QC,CANCADE,CANCADERERY,CANCADICAL,CASSCAND,CANCADE,CASSACHACE,10曼彻斯特,曼彻斯特,英国曼彻斯特,民用,环境和地质工程部11,伦敦大学学院,伦敦,英国,12个可持续水与能源有限责任公司,美国埃斯蒂斯公园,美国科罗拉多州埃斯蒂斯公园,13自然保护协会,弗吉尼亚州阿灵顿,弗吉尼亚州,美国,14,可再生和适当的能源实验室,加利福尼亚大学,伯克利大学,伯克利,伯克利,伯克利,15 WWF-Nepal,加德满都,尼泊尔,17 World Wild Life Fund-US,华盛顿特区,美国,18个独立顾问,Boulder,CO,CO
Acronym Definition AFD Agence Française de Développement BRT Bus rapid transit CNG Compressed natural gas CO 2 Carbon Dioxide DGC Departmental Green Champion DVLD Driver and Vehicle Licensing Department EBRD European Bank for Reconstruction and Development EMRC Energy and Minerals Regulatory Commission GAM Greater Amman Municipality GCAP Green City Action Plan GCG Green City Coordinator GGGI Global Green Growth Institute GHG Greenhouse gases GIZ Deutsche Gesellschaft für Internationale Zusammenarbeit ICLEI International Council of Local Environmental Initiatives IFI International Finance Institutions IMP Impact monitoring plan JEPCO Jordanian Electric Power Company KoM Kick-off meeting LoT Leaders of Tomorrow MEMR Ministry of Energy and Mineral Resources MGP Amman Metropolitan Growth Plan MoEnv Ministry of Environment MoT Ministry of Transport MWI Ministry of Water and灌溉NEPCO NEPCO国家电力公司2号二氧化氮no X氮氧化物PECS PECS PECS PRIPITY环境挑战PEP公共参与计划PMP进度监测PSR压力状态反应RSCN皇家社会自然保护Jordan Who Jordan Who Who Who World Health World Health Health Health Organsh
该报告借鉴了背景文件,案例研究和基础设施和水团队准备的贡献,包括能源团队:Megan Meyer,Carlos Costa,Caspar,Mateus Cavaliere和Mario Pereira(PSR Consulting)的Pierre Audine,Pierre Audine;来自水和卫生团队:Juliana Menezes Garrido,Paula Pedreira de Freitas de Oliveira,Viviane Virgolim Zamian,Tatiana Teles,Midori Makino和Christian Borja-Vega,并从Rui Cunha Marques提供了贡献;来自运输团队:Georges Bianco Darido,Edpo Covalciuk Silva,Carlos Bellas Lamas,Ana Waksberg Guerrini,Tais Fonseca和Xavier Espinem,并在Amy Schweikert,Mark Deinert和Mark Deinert和Guilherme Lher(Mine of leise de olie de olie de oliiriiriire gera)中Olomeu,JosévicenteCaixeta-Filho,Everton Lima Costa,Fernando Pauli de Bastiani,Lavinia Bettoni,Sarah Barbosa da Silva,JoséCaxieta,Daniela Bonato,Daniela Bonato,Lucas Melo(圣保罗大学)和Andy Ricover(Andy Ricover(咨询));来自数字开发团队:Julian Najles,Axel Rifon Perez和Estefania Belen Vergara Cobos;从基础设施金融,PPP和保证团队:Luciana Guimaraes Drummond E Silva,Philippe Neves和Patrice Caporossi。
摘要 - 在机器人技术和自动化等许多现实世界中,高度要求注册。注册在某种程度上挑战,因为获得的数据通常很吵,并且有很多异常值。此外,在许多实际应用中,一个点集(PS)通常仅涵盖另一个PS的部分区域。因此,大多数现有的注册算法无法保证理论融合。本文介绍了一种新颖,健壮和准确的三维(3D)刚性点集(PSR)方法,该方法是通过将最先进的(SOTA)贝叶斯相干点漂移(BCPD)理论推广到场景中来实现的,以使高维点集(PSS)位于AniSAlIniSAIS噪声中。高维点集通常由位置向量和正常向量组成。一方面,使用正常向量,提出的方法对噪声和离群值更为强大,并且可以更准确地找到点对应关系。另一方面,将注册纳入BCPD框架将保证该算法的理论收敛。我们在本文中的贡献是三倍。首先,将两个一般PS与正常向量对齐的问题纳入了变异的贝叶斯推理框架中,该框架可以通过概括BCPD方法来解决,同时考虑了各向异性位置噪声。第二,算法迭代期间的更新参数以封闭形式或迭代解决方案给出。第三,进行了广泛的实验,以验证提出的方法及其对BCPD的显着改进。
1.2.3.2 外部接口 ATCAS 的外部接口包括:a) 监视传感器:• PSR/MSSR 监视;• MSSR 监视;• ADS-B 和 ADS-C 数据链;• 多点定位;系统接收监视数据,处理信息并向控制器呈现空中情况的合成图像。b) 飞机控制器通过称为 CPDLC(控制器飞行员数据链通信)的特定协议与飞行员通信。系统接收轨迹和飞行计划信息并向飞行员发送命令。c) 相邻 ATCAS 相邻中心代表区域控制中心和进近控制。此接口主要发送和接收飞行计划协调消息,使用标准 ICAO 4444 消息或 OLDI 和 AIDC 协议。系统将与相邻中心共享监视数据。d) 时间参考系统 时间参考系统从 GPS 接收 UTC 时间并发送此信息以同步 ATCAS 工作站时间。e) 录音机 此接口用于将录音和回放系统活动与录音和回放同步。f) 操作员 他们由主控制员、助理、飞行数据操作员和技术/操作主管代表。g) AFTN 接口 当 AMHS 系统不可用时,它代表与 AFTN 的接口以接收和发送 ATS 消息。h) AMHS 接口 它代表发送和接收 ATS 消息的新接口。该系统具有通向 AFTN 的网关。i) ATFM 统一 此链接用于传输飞行计划和交通信息并协调措施以减少与流量管理相关的问题。j) 防御系统 该接口用于与防御系统交换监视信息和协调信息。
第一类:所有类型的目标天体任务,这些目标天体对于理解化学演化过程或生命起源无直接意义;未分化的变质小行星;其他 第二类:所有类型的任务(重力辅助、轨道器、着陆器),这些目标天体对于化学演化过程和生命起源有重大意义,但航天器所携带的污染物对未来调查造成影响的可能性极小;金星;月球(仅在极地和 PSR 中着陆任务才有有机库存);彗星;碳质球粒陨石小行星;木星;土星;天王星;海王星;木卫三†;土卫六†;海卫一†;冥王星/冥卫一†;谷神星;大于冥王星 1/2 大小的柯伊伯带天体†;小于冥王星 1/2 大小的柯伊伯带天体;其他 TBD 第三类:飞越(即重力辅助)和轨道器任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查;火星;木卫二;土卫二;其他 TBD 第四类:着陆器(以及潜在的轨道器)任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查。根据仪器、科学调查、特殊区域等,存在 3 个子类别(IVa、b、c);火星;木卫二;土卫二; TBD 第五类:返回所有地球:2 个子类别 - 对于科学界认为没有本土生命形式(如火星卫星)的太阳系天体,无限制返回,对于所有其他天体,有限制返回
简介:NASA 已确定迫切需要设计、制造和测试原位资源利用 (ISRU) 组件,以便在月球和/或火星上利用风化层资源生产纯净水、氧气和氢气。长期停留在月球或火星表面需要随时可用的纯净水源。水净化后,可用作氧气来源(既可作为居住舱人员的可呼吸空气,又可作为推进剂氧化剂),也可用作氢气作为推进剂燃料。将任何这些资源大量运输到月球或火星表面都很困难且成本高昂,因此必须使用原位资源来生成推进剂和生命支持消耗品。NASA 已明确确定需要开发和测试关键组件,以便从月球两极永久或近永久阴影区 (PSR) 的冰中提取和净化水。月球水可用于生产氢氧推进剂,用于月球运输工具(上升器和着陆器)、可重复使用的地月运输工具,以及最终用于人类火星及更远地区的任务。预计每次任务需要生产 14 至 50 公吨 H 2 /O 2 推进剂。此前从未有人对原位月球水进行过净化和电解。它带来了独特的挑战,与月球水和月球极地环境中存在的危险、有毒和易燃气体有关;以及发射到月球表面的系统通常存在的限制(质量、体积、功率、自主性、稳健性、可靠性和寿命)。这项技术的开发对于人类实现在月球上的可持续存在至关重要。利用该技术支持此类努力还将认证硬件是否可用于火星,在火星上,脱离地球对于机组人员的生存来说更为关键。