Layers Thickness (nm) ITO 133 ± 1 ITO + PTAA physically mixed layer (0.5 ITO + 0.5 PTAA) 0.0 ± 0.5 PTAA 12 ± 1 Void + wide-E g FA 0.8 Cs 0.2 Pb(I 0.7 Br 0.3 ) 3 perovskite nucleation layer (0.120 ± 0.003 void + 0.880 perovskite)
金属卤化物钙钛矿是多期光伏应用的有希望的光吸收器,因为它们具有出色的带隙可调性,通过在卤化物位点上的组成混合而实现。然而,宽带混合壁的钙钛矿与电荷萃取层之间界面处的能量水平对齐不良仍然会导致太阳能电池性能的显着损失。在这里,研究了这种损失的起源,重点是价值频带最大值和最高占用分子轨道(HOMO)之间的能量级别的未对准,通常使用的组合(fa 0.83 cs 0.83 cs 0.17 pb(i 1-x br x)3,溴化物含量为0到1,以及bromide content x ranging x ranging x ranging x聚[Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)。时间分辨光发光光谱和电荷载体动力学的数值模型的组合表明,与能量水平的不断变化相关的开路电压(V OC)损失(V OC)损耗来自PTAA的孔中的增加孔的增加,然后在PTAA的同质体中增加了孔中的孔,然后将其跨层次置于整个界面上,从而通过跨界面进行重新介绍。模拟假设与FA 0.83 CS 0.17 Pb(I 1-X BR X)配对的孔传输材料是理想的选择,3表明,这种源自能量级别未对准的V OC损耗可将其降低高达70 mV。这些发现突出了迫切需要使用带有宽带的混合壁式甲虫的量身定制的电荷萃取材料,以改善了能量水平的对准材料,以使能够改善功率转换功能的太阳能电池。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
J-box 接线盒 J sc 短路电流 JV 电流密度-电压 KRICT 韩国化学技术研究院 LCOE 平准化电力成本 LID 光致衰减 MA 甲铵 MAI 甲基碘化铵 MOCVD 金属有机化学气相沉积 MOVPE 金属有机气相外延 MSP 最低可持续价格 MWT 金属包裹 NREL 国家可再生能源实验室 OpEx 运营费用 P3HT 聚(3-己基噻吩) PCBM 亚甲基富勒烯 苯基-C61-丁酸甲酯 PEAI 苯乙基碘化铵 PECVD 等离子体增强化学气相沉积 PERC 钝化发射极和背电池 PERL 钝化发射极后部局部扩散 PERT 钝化发射极后部全扩散 PET 聚对苯二甲酸乙二醇酯 POE 聚烯烃 PSG 磷硅酸盐玻璃 PTAA 聚(三芳胺) PV 光伏 PVCS 光伏组合开关设备 R&D 研究与开发 R2R卷对卷 RTP 快速热处理 S2S 片对片 SAS 硒化和硫化 SG&A 销售、一般及行政管理 SHJ 硅异质结 SJ 单结螺-OMeTAD 2,2',7,7'-四(N,N-二对甲氧基苯胺)-9,9'螺二芴 STC 标准测试条件 TCO 透明导电氧化物 TEF 技术演进框架 TJ 三结 TMAl 三甲基铝 TMGa 三甲基镓 TMIn 三甲基铟 USD 美元 V oc 开路电压 wph 每小时晶圆