示例,[2]和[3]中的作品描述了一个基于功率传递分布因子(PTDF)(请参阅[8,9])的动力学模型,该模型仅允许开始/关闭缩减决策,因此避免了对发电的元素操纵。由于现在可以考虑到传输系统运营商(TSO)的局部削减的可能性,因此本文介绍了一个动态模型,介绍了部分降低可再生能力所需的整个元素。所提出的方法基于PTDF建模框架,并针对使用基于模型的优化技术通过可再生功率部分削减和存储设备来最佳管理亚transmission区域充血状况的可能性。本文的目标是提供一个动力学模型,该模型可靠地描述了系统功能,并且适合基于模型的区域的最佳管理。由于通信约束,仅可用局部描述,并且与剩余网络的连接定义为作用在区域上的扰动。控制一个孤立区的主要挑战是针对该区域边界的全球功率流执行本地控制动作。的确,由于安全性和实际原因,不可能根据整个网络规模的状态测量做出决策。因此,要获得所考虑区域的近距离动力学模型是一个具有挑战性的问题。此外,我们提出了一种面向控制的建模方法。纸张的组织如下。符号:本文的最终目标是验证一个能够考虑传输网络从可再生能源中降低电源的可能性,并使用存储设备来考虑在线优化策略,以考虑电力线约束,控制动作延迟以及由于发电和模型近似而导致的不确定性。第二节介绍了考虑的建模。验证线性化动力学的模拟是在第三节中进行的,同时在第四节中概述了结论。
摘要。本研究重点评估储能系统 (ESS) 对可再生能源资源丰富的电力系统安全性改善的影响。为此,储能系统的存在被适当地纳入安全约束最优潮流 (SCOPF) 模型中;因此考虑了所需的技术修正。为了建立一个现实的模型,还考虑了火电机组的爬坡约束,这限制了发电机完全应对电力短缺。考虑到可再生能源发电的高渗透水平,模拟了输电线路和发电机的不同停电场景,以测量线路停电分布因数 (LODF) 和电力传输分布因数 (PTDF)。此外,为了说明风电发电量削减和负荷削减的经济影响,模型考虑了风电削减 (VWC) 和负荷损失值 (VOLL) 两个惩罚参数的值。对两个测试系统(包括 PJM 5 节点系统和 IEEE 24 节点 RTS)进行了数值研究,以评估 ESS 对所研究系统安全性改进的可能影响。并对所得结果进行了深入讨论。
资本化条款应具有MISO关税,NERC可靠性标准(“ NERC标准”),可靠性标准(“ NERC术语表”)或本文档定义的含义。 AFC: Available Flowgate Capability ARR: Auction Revenue Right BA: Balancing Authority Area CBM: Capacity Benefit Margin CPNode: Commercial Pricing Node DA/RT: Day-Ahead and Real-Time Energy and Operating Reserve Market EMS: Energy Management System FFE: Firm Flow Entitlements FMA: FTR Market Administration FTR: Financial Transmission Right ICCP: Inter-Control Center Protocol IDC: Interchange Distribution Calculator JOA: Joint Operating Agreement (also known as Seams Agreement) LBA: Local Balancing Authority LBA Area: Local Balancing Authority Area LF: Loop Flow LF ARR: Loop Flow Auction Revenue Right MOD: Model on Demand OTDF: Flowgate: Outage Transfer Distribution Factor flowgate (with contingency) PAR: Phase Angle调节器PTDF:Flowgate:电力传输分配因子流窗(无需意外情况)RCF:相互协调的流程RTCA:实时应急分析RTO:RTO:区域传输组织