摘要:这项研究是关于在Paddleocr中实施Yolo算法和机器学习的几个方面。提及讨论了这种技术集成以及他们在实现现实世界情景中完成任务和预期使用的方式。本文通过广泛分析文献并进行故意实验来实现这一目标。在本文中还捕获了有关算法有效性和挑战的见解。当代计算机视觉系统利用Yolo(您只看一次)和Paddleocr等有效的机器学习方法在几乎每个工业领域都扩展了。本文涉及这些算法在广泛的程序中的整合以及对实际领域的结果影响。本文对最新文献和实验分析进行了系统性阅读,以提出其用法的这一重要方面,未来的挑战及其前景。关键字:Yolo算法,Paddleocr,机器学习,对象检测,光学特征识别,深度学习。
妇女家庭科学与高等教育研究所,印度泰米尔纳德邦哥印拜陀摘要:该系统通过利用眼睛追踪技术的力量来无缝控制家庭用具,从而彻底改变了瘫痪者的生活。利用OPENCV进行鲁棒和实时的眼动追踪,该系统通过专注于预定义的模式或命令,使患者能够轻松地与周围环境互动。用户友好的界面促进了眼动与各种家用设备(包括灯光,风扇和娱乐系统)之间建立连接。这种创新的解决方案赋予了机动性有限的个人重新获得独立性的能力,通过基于直觉的目光命令简化了日常工作和生活空间的管理。通过提供一种新颖的沟通和控制途径,该系统为瘫痪的患者提供了一种新的自主性,便利性和改善的生活质量。索引术语:瘫痪,眼睛跟踪技术,OPENCV,预定义的模式或命令,家用设备,基于目光的控制。
技术堆栈:Python,Pytorch,Tensorflow,Keras,Scikit-Learn,Xgboost,onnx |自然语言处理(NLP):NLTK,Spacy,Gensim,Openai,Huggingface |计算机视觉:OPENCV,枕头,Tensorflow Hub,DeepFace,Midas,Paddleocr |推荐系统和语义搜索:矢量数据库(Milvus,Chromadb)| MLOPS:Azure ML Studio,AWS SageMaker,MLFlow
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA