摘要 —本文提出了一种无痛(基于EEG)大脑控制密码验证的方案,该方案专为完全丧失行为能力的患者设计。宇宙中最复杂的结构是人类大脑。为了分析其特征,已经以合法有序的方式完成了许多分析和解释。有些人身体部分麻木,无法移动、说话,有些人甚至无法移动头部。通常,密码验证是锁定、银行登录等一些应用所必需的,瘫痪患者也可以通过脑电波手机和眨眼来使用密码验证。脑电波手机采用BCI(脑机接口)原理,可监测来自大脑的EEG波。它获取大脑提示并将它们转换为命令,然后将其传递给执行正确操作的设备。在边缘电压的帮助下,还可以使用眨眼。使用 Neuroskymindwave mobile 获取来自人类大脑的伽马波,并识别眼球闪烁强度。根据 EAR 和输入密码所经过的外壳数量。输入正确的密码后,即可批准。关键词——密码验证、脑控接口、伽马波、NeuroskyMindwave mobile、眼球纵横比
摘要:数字景观中的身份验证是由于不断发展的网络威胁而面临的持续挑战。传统的基于文本的密码,这些密码容易受到各种攻击,因此需要创新解决方案来加强用户系统。本文介绍了Rosecliff算法,该算法是一种双重身份验证机制,旨在提高针对复杂的黑客尝试的弹性并不断发展存储的密码。该研究探讨了加密技术,包括对称,不对称和混合加密,从而解决了量子计算机构成的新兴威胁。Rosecliff算法将动态介绍给密码中,该密码允许在多个平台上进行更安全的通信。评估算法的强大攻击,例如蛮力,字典攻击,中间攻击和基于机器学习的攻击。Rosecliff算法通过其动态密码的一代和加密方法,证明了针对这些威胁有效的。可用性评估包括实施和管理阶段,专注于无缝集成以及用户体验,强调清晰度和满意度。限制被承认,从而敦促对加密技术的弹性,鲁棒性的鲁棒性以及对新兴技术的整合的进一步研究。总而言之,Rosecliff算法是一种有希望的解决方案,从而有效地应对现代身份验证挑战的复杂性,并为未来的数字安全研究和增强功能奠定了基础。
摘要 - 本研究通过开发TKIP -RUB(转换键盘输入模式以识别用户行为)算法在密码更新期间将合法用户与冒险者区分开的挑战。文献综述表明,包括EPSB方法在内的现有算法在基于移动键盘输入的情况下识别用户行为的准确性有限。旨在通过回答问题来增强身份验证系统的研究:转换历史输入模式是否可以提高用户识别的准确性和可靠性?假设提出的算法将在准确性和精确度上显着优于现有方法。为了评估这一点,使用143位用户更新密码的用户的登录尝试进行了实验研究,从而产生了629个记录的数据集(486个培训,143个测试)。将TKIP-RUB算法集成到移动身份验证系统中,以分析用户行为并生成预测模式。结果表明,尽管EPSB算法的准确度达到9.091%,但TKIP-RUB算法达到53.147%,代表了五倍的提高。这证明了TKIP-RUB算法在提高识别率,安全性和积极的预测精度方面具有较高的有效性。
通常,密码管理器(也称为钥匙链)应用程序将将其密码数据库存储在磁盘上,并由强键链密码保护。在使用时,它可能会在内存中存储数据库的“解锁”表示,从而可以为每个所需域提供密码。而不是实施完整的独立密码管理器应用程序,而是为此项目负责核心库。因此,您无需实现与密码管理器进行交互的交互式前端,也不需要实际写入磁盘的内容。相反,您将通过提供功能来序列化并将数据结构序列化到字符串表示形式来模拟这些功能,从而可以很容易地通过将这些表示形式写入磁盘来完成完整的密码管理器应用程序。
Thales的数字身份产品和解决方案增强了数十亿人和拥有数字身份的事物。Thales OneWelcome身份和访问管理产品组合使组织能够为客户,业务合作伙伴和员工建造无摩擦,可信赖和安全的数字旅程。OneWelcome身份平台提供了各种功能,从身份验证,单登录,无密码和多因素身份验证到欺诈管理,自适应访问,动态授权以及最高保证级别的同意和偏好管理。超过30,000个组织信任我们的IAM和数据安全需求,使他们能够为用户提供安全的数字服务。
摘要 - 确定远程密码(SRP)协议是基于离散对数问题(DLP)的重要密码认证的密钥交换(PAKE)协议。该协议是专门设计的,旨在为各方使用会话密钥,并且由于其有吸引力的安全功能,它在各种情况下被广泛使用。作为增强板协议,服务器不存储密码等效数据。这使设法窃取服务器数据的攻击者不能伪装为客户,除非执行蛮力搜索密码。但是,量子计算中的进步有可能使基于经典DLP的公共密钥密码学方案不安全,包括SRP协议。因此,设计一种抵抗量子攻击的新协议是显着的。在本文中,基于基本协议,我们通过错误(LWE)问题从学习后构建了一个Quantum SRP协议。除了对已知量子攻击的阻力外,它还保持原始协议的各种安全质量。索引条款 - 远程密码协议,密码认证的密钥交换,错误学习。
摘要。密码被广泛用于实践中的用户身份验证,这导致了一个问题,即我们是否可以基于它们来实现强烈安全的设置。从历史上看,这已经广泛地进行了关键交流。从低接收密码到确保通信的高熵密钥的引导程序。其他实例包括数字储物柜,签名,秘密共享和加密。是出于最近关于消耗令牌的工作的动机(Almashaqbeh等,Eurocrypt 2022),我们扩展了这些努力,并调查了密码实施密码的密码学的统一限制,其中知道密码允许执行加密功能。我们的模型由于消耗令牌的自我毁灭和不可统治性而抵抗详尽的搜索攻击。我们研究两个方向;首先是密码实施的加密功能的代表团,其中一方可以将她委派给她,例如签署或加密/解密,是另一个人的权利,使得行使委派需要知道通行证。第二个方向是密码实施的MPC,其中只有共享正确密码的参与者才能执行MPC协议。在这两种情况下,一个不知道密码的对手可以尝试一些猜测,然后功能自我毁灭。我们正式定义上述概念并构建实现它们的结构。我们在这项工作中的主要目标是根据可行的构造和支持的对手模型来研究消耗代价的力量,从而构建密码实施密码,从而概述了开放问题和潜在的未来工作方向。
sublack•限制单个Microsoft帐户的密钥•限制指纹注册的数量•具有“ PIN + BIOMERTIC”的授权身份验证•将用户 - 二级值索引链接到凭据•验证审核的安全键序列号
密码是一个可使用的符号字符串。尽管有据可查的弱点,但密码可能会与我们同在一段时间。因此,我们想根据密码来阐明密码学的安全属性。在这项工作中,我们考虑如何定义使用密码,所谓的密码认可的密钥交换(PAKE),分析现有和新颖协议的键交换的安全性,并显示我们的定义如何允许基于密码的应用程序组成推理。密码认可的密钥交换协议是一个两党协议,每个方将密码和(公共)关联的数据作为输入,然后双方转弯交换消息,最后拒绝或输出会话密钥。关联的数据编码键交换的上下文。我们的第一个加密目标涉及身份验证: