可兴奋细胞(如神经元和肌肉细胞)的膜电位经历了由一系列配体和电压门控离子通道介导的丰富动态变化。尤其是中枢神经元,它们是信息、感知和整合由突触输入介导的多个亚阈值电流并将其转化为动作电位模式的出色计算机。电生理学包括一组允许直接测量电信号的技术。有许多不同的电生理学方法,但由于果蝇神经元很小,全细胞膜片钳技术是记录来自单个中枢神经元的电信号的唯一适用方法。在这里,我们提供了果蝇膜片钳电生理学的背景知识,并介绍了解剖幼虫和成年大脑的方案,以及实现已识别神经元类型的全细胞膜片钳记录的方案。膜片钳是一种劳动密集型技术,需要大量练习才能成为专家;因此,应该预计学习曲线会很陡峭。然而,我们希望分享和传播神经元放电的即时满足感,因为需要更多的果蝇膜片钳来研究迄今为止未知的许多果蝇神经元类型的电特征。
果蝇被广泛用作所有生物医学研究领域的模型生物。在神经科学领域,人们利用这种小果蝇获得了大量信息,包括识别调节行为的神经回路、揭示其遗传基础以及所涉及的分子机制。尽管有大量遗传工具可用于操纵和推断神经元活动,但对果蝇神经元电特性的直接测量却落后了。这是因为在果蝇中枢神经元等小细胞中进行电记录非常复杂。膜片钳技术提供了直接测量果蝇神经元电特性的独特可能性。此分步方案提供了掌握此技术的详细建议。
摘要智能设备和无线设备数量的增加需要在较高频率频谱中进行更灵活的分配。动态频谱访问是解决频谱稀缺问题的主要候选者之一。电视白色空间(TVWS)提供了一种手段,可以随着传统的电视广播向数字广播的逐步切换而考虑到机会意义上的电视频带。带有迷你,微型或纳米电路包装中的智能设备,主要挑战之一是设计紧凑型收发器天线,适用于以超高频(UHF)频段运行的移动设备。本文简要概述了TVWS和提议的微带贴片天线设计。在MATLAB中设计和模拟了几何测量和天线参数。结果表明,在638 MHz工作频率和辐射模式下的高前到背部功率比下具有共振性能。辐射特性在方位角几乎是全向方向的,而在高度平面则是方向性的。后面有最小的辐射,因此,对于薄而纤细的设备,这将适合所需的应用关键词:认知无线电,微带,电视,白色空间1。引言无线通信的进步需要在较高频谱中利用更多的电磁频带,以在轻范围通信通道上增加带宽的能力。由于针对各种应用程序发明和制造了新的和创新的通信设备,因此频率资源的稀缺性也会增加。为了解决这个问题,正在利用一种称为动态频谱访问(DSA)的技术,该技术允许以有效有效的方式访问频段。数字切换或模拟电视频段被切换到数字格式允许使用
摘要:渗出是静脉内(IV)插管的并发症,其中囊泡药从静脉泄漏到周围的皮下组织。渗出的严重程度取决于积累在皮下组织中的药物的类型,浓度和体积。快速检测到渗出可以促进迅速的医疗干预,最大程度地减少组织损伤并防止不良事件。在这项研究中,我们提出了两个便携式传感器斑块,即黄金和碳的感应贴片,用于早期检测到渗出。在体内动物模型和人类临床试验中,基于黄金的传感器斑块检测到的量表低至2 ml的额外流体;该贴片的阻力变化为41%。对于2 mL的额外流体,碳基贴片表现出51%的电阻变化,而与基于金的感应贴片相比,该斑块的制造吞吐量和成本效益优越。
摘要 - 使用频谱传感和射频识别技术的新结构健康监测(SHM)计划提出了衡量结构性应变。与高端设备相比,涉及通用软件无线电外围设备(USRP)的拟议程序为这类测量方法提供了一种经济的替代方案,而该方法可以实现更灵活的数据处理。应变检测的整体系统由三个主要部分组成:1)斑块天线作为应变的传感器; 2)USRP作为测量工具; 3)用于数据处理的计算机。由于天线长度的变化,斑块天线可用于通过探视谐振频移来测量结构应变。在本文中,我们使用应用于USRP的优化能量检测算法来检测贴片天线的光谱,最终测量结果表明,斑块天线传感器具有应变敏感性1.7678 kHz/ µε,而测量值的误差和应力值之间的误差和2.4443的真实值是2.4443%的计算机。
多尺度实验 (SWARM-EX) 是由三颗立方体卫星组成的集群,将以综合方式探测赤道电离和热层异常(300 公里 - 600 公里)。• 卫星间距离从 0.25 公里到 1000 公里不等。• 这项探索任务具有科学、工程和教育目标。• 由大学牵头的与 6 所大学的合作项目
摘要 - 最近,由于其固有的快速转弯,自定义建模,更容易的制造和具有成本效益的实现的功能,因此,近期是针对原型复杂和共形射频(RF)电路的一种非常有效的解决方案。一种可商购的导电丝,伊维利(Electifi)最近被多个研究人员报道,作为使用增材制造技术替换印刷电路板上传统铜痕迹的潜在候选者。使用融合细丝制造方法的添加剂制造方法,本文根据针对太空出生应用的Planar TMM4基板的改进的导电电丝丝的改进版本提出了3D打印的微带贴片天线,例如,3D印刷的卫星,太空层次套件,以及零层次的实验等。也是NASA的最新利益。此外,此处还介绍了全波模型与天线的3D打印原型之间的详细比较分析。针对合适的空间应用,天线尺寸已针对S波段(2 - 4 GHz)的2.56 GHz的工作频率进行了优化。
摘要 - 平面I形折叠点天线,占地面积为21 mm×21 mm×1.6 mm,设计用于紧凑的UHF RFID标签,可在金属上串联。天线由三个部分组成:平方接地平面,一个I形斑块和环谐振器。I形贴片通过狭窄的短枪互连到接地平面,并将微带进料线插入贴片中,以减少贴片的输入阻抗。环谐振器引入的额外电容和电感可以将标签的谐振频率降低到预期的UHF RFID频段。所提出的天线是制造的,模拟和测量结果之间具有良好的一致性。所提出的标签天线在920 MHz的谐振频率下,在金属上达到高达6.3 m的距离(具有4 W当量的各向同性辐射功率)。
技术转让和工业接口部 (TTID)、PPG 空间应用中心 (SAC)、ISRO、Ambawadi Vistar、艾哈迈达巴德 - 380 015 电子邮箱:ttid@sac.isro.gov.in 传真:079-26915817 https://www.sac.gov.in/SAC_Industry_Portal
摘要:本文提出了一种77 GHz串馈贴片阵列天线的设计方法。该研究基于传统遗传算法,探索由相同微带贴片组成的不同阵列拓扑来优化设计。主要的优化目标是降低最大旁瓣电平(SLL)。采用该方法对一种用于汽车雷达的77 GHz串馈贴片阵列天线进行了仿真、加工和测量。天线长度限制不大于3 cm,阵列仅有单个紧凑串联,辐射贴片宽度约为1.54 mm。在用于优化的遗传算法中,将最大旁瓣电平设置为小于或等于-14 dB。测量结果表明,在77 GHz处,所提出的天线的增益约为15.6 dBi,E平面半功率波束宽度约为±3.8 ◦,最大旁瓣电平约为-14.8 dB,H平面半功率波束宽度约为±30 ◦。电磁仿真与测量结果表明,采用所提方法设计的77 GHz天线比本文相同长度的传统天线旁瓣抑制效果提高4 dB以上。