全息原理认为,体空间的自由度 (DoF) 被编码为边界量子场系统的信息 [1, 2, 3]。该原理的已知例子有黑洞熵 [4, 5, 6, 7] 和 d + 2 维反德西特时空/d + 1 维共形场论 (AdS d +2 /CFT d +1 ) 对应关系 [8, 9, 10, 11]。在发现 AdS d +2 /CFT d +1 对应关系中的全息纠缠熵的 Ryu–Takayanagi 公式 [12, 13, 14, 15] 后,多尺度纠缠重正化假设 (MERA) [16, 17] 被提出作为该公式背后的体量子纠缠的全息张量网络 (HTN),其中 d = 1 为零温度 [18, 19]。这里,MERA 是通过解纠缠器层(对我们而言是二分量子比特门)和粗粒化器层(等距)的半无限交替组合对量子比特中边界 CFT 2 的量子基态进行实空间重正化群变换 [16, 17]。MERA 是一个尺度不变的张量网络。基于对 HTN 的初步研究 [18, 20, 21],本文作者对 HTN 进行了经典化 [22, 23, 24, 25]。其中,HTN 的经典化是指在 HTN 中采用单量子比特的第三 Pauli 矩阵作为超选择规则算子 [25]。即,作用于 HTN 的希尔伯特空间的量子力学可观测量需要与第三 Pauli 矩阵交换,并根据这种交换性进行选择。HTN 经典化后,经典化全息张量网络 (cHTN) 的量子态对于所选可观测量在第三 Pauli 矩阵的特征基上没有量子干涉,因此等价于经典混合态,即第三 Pauli 矩阵乘积特征态的统计混合,
i 0),z =(1 0 0-1)。在视觉上,X(y)的特征向量是沿Bloch球的X(y)轴的抗焦点。由于硬件无法直接沿这些轴进行测量,因此通过第一次旋转Bloch球的测量值,以x(y)轴与z轴对齐,如图3所示。随后,可以执行标准的Z基测量值,然后可以将结果映射到有效的X(Y)测量中。实现x -to -z和y -t至z轴旋转的量子门分别称为h和hs -1 [35]。写为量子电路(从左到右的“时间轴”视图),这些旋转看起来像h和s -1 h。相同的一般测量原理适用于跨多个Qubits测量运算符:测量是通过旋转目标操作员的特征向量来与标准z-基础向量保持一致的。之后,随后的z-基础测量结果可根据需要折叠到目标操作员的特征向量上。必要特征向量旋转的量子电路具有矩阵表示,其列是目标运算符的特征向量。在这项工作中,我们有兴趣测量Pauli字符串,Pauli Strings是跨多个量子位的Pauli矩阵(例如,X 3 I 2 Z 1 Y 0),通常在没有下标的情况下缩写为Xizy。
我们构建了一个新的排列不变的代码,该代码纠正了任何tě1。我们还表明,新家庭中的代码正确量子缺失错误以及自发衰减错误。我们的构造包含一些预先已知的排列量子代码作为特定情况,这些量子代码也允许横向大门。在许多情况下,新家庭中的代码比保利·错误和删除的最佳先前已知的明确排列代码短。此外,我们的新代码系列还包括一个新的PP 4、2、2 QQ最佳单删除校正代码。作为一个单独的结果,我们概括了置换不变代码的条件,以纠正先前已知的t“ 1到任意数量错误的结果)。对于小t,这些条件可用于通过计算机构建代码的新示例。
3量子相变1 3.1量子 - 经典连接。。。。。。。。。。。。。。。。。。。。。。1 3.1.1经典的量子。。。。。。。。。。。。。。。。。。。。。。。。。。1 3.1.2量子到古典。。。。。。。。。。。。。。。。。。。。。。。。。。10 3.2路径积分。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 3.2.1 Langevin方程的Wiener Construction。。。。。。。。。16 3.2.2 Feynman Path积分结构。。。。。。。。。。。。。。。18 3.2.3 Wick的旋转。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 3.2.4基态。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 3.2.5经典限制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.6量子校正。。。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.7谐波振荡器。。。。。。。。。。。。。。。。。。。。。。。。23 3.2.8隧道和激体。。。。。。。。。。。。。。。。。。。。。。。。25 3.2.9还原系统。。。。。。。。。。。。。。。。。。。。。。。。。。。30 3.3相关性能。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 3.3.1期望值和相关性。。。。。。。。。。。。。。。。。。33 3.3.2线性响应和kubo公式。。。。。。。。。。。。。。。。。。。35 3.3.3线性响应和onsager关系。。。。。。。。。。。。。。。。。37 3.3.4因果关系和Kramers-Kronig。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 38 3.3.5 KMS关系。 。 。 。 。 。 。 。 。 。 。37 3.3.4因果关系和Kramers-Kronig。。。。。。。。。。。。。。。。。。。。。。38 3.3.5 KMS关系。。。。。。。。。。。。。。。。。。。。。。。。。。。39 3.3.6流动性散文定理。。。。。。。。。。。。。。。。。。40 3.4量子相变。。。。。。。。。。。。。。。。。。。。。。。。。。。42 3.4.1量子链链。。。。。。。。。。。。。。。。。。。。。。。。44 3.4.2二元性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48 3.4.3 Jordan-Wigner转换。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 48 3.4.4 Bogoliubov变换。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 50 3.附录。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53 3.A.1自旋1/2。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53 3.A.2 Pauli矩阵。48 3.4.3 Jordan-Wigner转换。。。。。。。。。。。。。。。。。。48 3.4.4 Bogoliubov变换。。。。。。。。。。。。。。。。。。。。50 3.附录。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 3.A.1自旋1/2。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 3.A.2 Pauli矩阵。53 3.A.2 Pauli矩阵。。。。。。。。。。。。。。。。。。。。。。。。。。。54 3.A.3矩阵元素。。。。。。。。。。。。。。。。。。。。。。。。。。。55 3.A.4固定相近似。。。。。。。。。。。。。。。。。。。。57
通过将库珀对的反平行电子旋转沿空地外方向锁定,使平面上临界磁场的平面上限上限超过了保利的极限。首先是在过渡金属二分法的完全二维单层中明确证明的,具有大型旋转轨道耦合和破裂的反转对称性。从那时起,几项研究表明它也可以存在于分层的散装材料中。在我们先前的研究中,我们阐明了基于散装超导性超导性的基本微观机制,基于通过绝缘层和限制反演对称性而导致的超导层之间的电子耦合减少。但较早的研究表明,在某些过渡金属二甲藻元中多型pauli paparagnetic极限也违反了。在这里,使用热容量测量值我们明确证明,原始的非中心体积4H A -NBSE 2多型物质显着违反了Pauli的极限。在理论模型中使用了使用实验确定的晶体结构从Ab ITIOL计算获得的频带结构参数,该模型在理论模型中使用,该模型提供了仅基于破裂的反转对称性的ISING保护的微观机制。
•噪声恶魔使用任意K-Local(有限的Pauli重量)门具有通用计算能力(例如1- Quit(连续)门)。•噪声恶魔的速度有限(我们希望)。•您的计算能力较小 - 仅非全世界的克利福德门和测量值。
Horizon Europe-Horizon Europe内部安全(集群3)公民安全(集群3)联系信息Pauli Stigell商业芬兰+358 50 5577 5577 856 Pauli.stigell(at)BusinessFinland.fi Hanna-Sihvonen Sihvonen Interior +358 50 538 Hanna-Miina.sihiine.sihnennecect of Hanna-sihvonen( 2024 17:00 1:00 Bussels Time
问题6。量子计算的重要结果是H,CNOT和Pauli Gates并非通用量子计算。实际上,可以通过经典计算机有效地模拟由这些门组成的任何量子电路(以及计算基础上的标准输入状态和测量值)!此结果称为Gottesman-Knill定理。此问题的目的是证明定理背后的关键结果。
课程简介:本课程介绍量子力学的基础,特别关注量子系统控制的基本原理。量子力学的实验基础。叠加原理、薛定谔方程、特征值和时间相关问题、波包、相干态;不确定性原理。一维问题:双阱势、隧穿和共振隧穿;WKB 近似。厄米算子和期望值;时间演化和汉密尔顿量、交换规则、微扰理论、转移矩阵和变分方法。晶体、布洛赫定理、超晶格。角动量、自旋、泡利矩阵和泡利方程。光与二能级系统的相干相互作用。电磁场的量化、自发和受激发射;腔 QED 元素;量子比特、纠缠、隐形传态、贝尔不等式。