尽管隐式神经表征 (INR) 近期取得了进展,但对于基于坐标的 INR 多层感知器 (MLP) 来说,学习跨数据实例的通用表征并将其推广至未见实例仍然具有挑战性。在这项工作中,我们为可推广的 INR 引入了一个简单而有效的框架,该框架使基于坐标的 MLP 能够通过仅调节早期 MLP 层中的一小组权重作为实例模式组合器来表示复杂数据实例;其余 MLP 权重学习跨实例通用表示的模式组合规则。我们的可推广 INR 框架与现有的元学习和超网络完全兼容,可用于学习预测未见实例的调节权重。大量实验表明,我们的方法在音频、图像和 3D 对象等广泛领域都实现了高性能,而消融研究验证了我们的权重调节。
摘要。如今,机器和深度学习技术广泛应用于从经济学到生物学等不同领域。一般来说,这些技术可以以两种方式使用:尝试将众所周知的模型和架构适应可用数据,或设计自定义架构。在这两种情况下,为了加快研究进程,了解哪种类型的模型最适合特定问题和/或数据类型是很有用的。通过关注脑电信号分析,本文首次在文献中提出了用于脑电信号分类的机器和深度学习基准。在我们的实验中,我们使用了四种最广泛的模型,即多层感知器、卷积神经网络、长短期记忆和门控循环单元,强调哪一种可以成为开发脑电分类模型的良好起点。
摘要:脑电图 (EEG) 信号分类在开发残疾人辅助康复设备中起着重要作用。在此背景下,从 20 名健康人身上获取脑电图数据,然后进行预处理和特征提取过程。提取 12 个时间域特征后,采用两个著名的分类器,即 K 最近邻 (KNN) 和多层感知器 (MLP)。采用五重交叉验证方法将数据分为训练和测试目的。结果表明,MLP 分类器的性能优于 KNN 分类器。MLP 分类器实现了 95% 的分类器准确率,这是最好的。本研究的结果对于在线开发脑电图分类模型以及设计基于脑电图的轮椅非常有用。关键词:运动想象,脑电图信号,KNN,MLP,ICA。介绍
深度学习和神经网络:多层感知器:多层感知器体系结构,什么是隐藏的层?每一层中有多少层和多少个节点?激活函数:线性传输函数,重型阶跃功能(二进制分类器),sigmoid/logistic函数,软马克斯函数,双曲线切线函数(TANH),整流的线性单元,泄漏的relu。前馈过程:前馈计算,特征学习。错误函数:错误函数是什么?,为什么我们需要一个错误函数?错误总是正面的,均为正方形错误。跨凝性,关于错误和权重优化算法的最终说明:什么是优化?,批处理梯度下降,随机梯度下降,微型批次梯度下降,梯度下降点击。反向传播:什么是反向传播?,反向传播外卖。
心血管疾病(CVD)或心脏病是早期死亡的主要原因之一,即使在年轻时也常常突然出现。如果更准确地检测到它,那么在严重影响个人之前,可以通过适当的药物和生活方式的变化来挽救生命。在这项工作中,在两个不同的数据集上应用了不同的机器学习分类器和深度学习算法多层感知器(MLP),即Framingham心脏研究数据集和UCI心脏病数据集预测心脏病。使用高参数调整对这些算法进行了优化,并比较其性能指标和预测精度。对于不同的功能,使用机器学习算法计算特征重要性得分。这些功能根据其分数进行排名。在各种分类算法中,随机森林算法显示出最佳的结果,预测精度为97.13%,对于Framingham数据集。MLP对两个数据集都表现出良好的性能。
摘要。在本文中,我们提出了一种基于量子感知的多层神经网络的无梯度方法。在这里,我们偏离了古典感知和量子位上的元素操作,即QUBITS,以根据量子感知来提出问题。然后,我们利用可衡量的操作员以与马尔可夫流程一致的方式来解除网络的状态。这产生了与量子力学一致的Diracvon Neumann配方。此外,此处介绍的公式的优点是具有没有网络中层数的计算效率。这与Quantum Computing的自然效率相结合,可能意味着效率的显着改善,对于深网的效率很大。最后,但并非最不重要的一点是,这里的发展本质上是相当普遍的,因为此处介绍的方法也可以用于在常规计算机上实施的量子启发的神经网络。
植入式脑机接口的一个关键问题是它们需要极高的能效。降低能耗的一种方法是使用这些设备中嵌入的处理器提供的低功耗模式。我们提出了一种技术来预测感兴趣的神经元活动何时可能发生,以便处理器在这些时间以标称工作频率运行,否则置于低功耗模式。为了实现这一点,我们发现分支预测器也可以预测大脑活动。我们对清醒和麻醉的老鼠进行脑部手术,并评估几种分支预测器预测小脑神经元活动的能力。我们发现感知器分支预测器可以预测小脑活动,准确率高达 85%。因此,我们利用分支预测器来指示何时在低功耗和正常操作模式之间转换,节省高达 59% 的处理器能量。
简介:不可避免地会影响人们的情绪和行为的最常见和广泛的精神状况就是压力。对强大的情感,智力和身体障碍的生理反应可能被视为压力。因此,早期的压力检测可能会导致解决方案,以改善潜在的改进和最终事件抑制。目标:使用MLP分类器对人类的EEG信号分类。方法:我们检查了当前使用的EEG信号分析技术,用于使用多层感知器(MLP)检测精神压力。结果:建议的技术具有95%的分类精度性能。结论:在我们的研究中,使用MLP分类器从EEG信号中检测压力已显示出令人鼓舞的结果。分类器的高精度和精度以及某些EEG频段的信息性质,表明这种方法可能是压力检测和管理的宝贵工具。
知识提取模型(KEM)是一个系统,可通过基于IoT的智能废物箱清空调度分类来提取知识。分类是一个困难的问题,需要有效的分类方法。这项研究以KEM系统的形式做出了贡献,以使用机器学习方法的最佳性能排空废物箱的时间表。该研究旨在比较决策树,幼稚的贝叶斯,K-Nearest邻居,支持向量机和多层感知器的形式的机器学习方法的性能,这将在KEM系统中使用。使用具有十个观测值的交叉验证方法对准确性,召回,精度,F-量和ROC曲线进行了。 实验结果表明,决策树最适合准确性,召回,精度和ROC曲线。 相比之下,K-NN方法获得了最高的F量度性能。 可以实现以从其他基于物联网的系统中创建的数据集中提取知识。。实验结果表明,决策树最适合准确性,召回,精度和ROC曲线。相比之下,K-NN方法获得了最高的F量度性能。可以实现以从其他基于物联网的系统中创建的数据集中提取知识。以从其他基于物联网的系统中创建的数据集中提取知识。
机器学习是“一个研究领域,它使计算机能够学习而无需明确地进行学习” [11]。机器学习的起源始于康奈尔大学的心理学家弗兰克·罗森布拉特(Frank Rosenblatt)。基于人类神经系统的机器设计。该机器被称为“ Perceptron”,其目的是识别字母的字母[8]。随着机器学习的领域的增长,可以完成的任务数量也随之增长。例如,对象检测是通过使用机器学习进一步研究,测试和部署的众多任务之一。对象检测是计算机视觉中的视觉识别问题,其目标是在给定图像中找到某些目标类的对象,并为每个对象分配一个相应的类标签。由于近年来基于深度学习的图像分类的成功,它结合了深度学习技术[12]。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。 创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。 在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。 最后,本文将以结论结束。现在已经解释了机器学习的一些历史,让我们开始研究如何使用它来检测指尖。创建此机器将是有益的,因为它的模型可以采用并将其实施到不同的应用程序中。在本文的其余部分中,将说明以下内容:讨论的第一个主题将是其他人在手指检测方面进行的一些先前研究,接下来将提供模型的创建和测试方法,然后将是整个过程的结果。最后,本文将以结论结束。