摘要 - 本文从知识创造和知识转移的角度讨论了人工智能在营销中的陷阱和机遇。首先,我们讨论了区分人工智能应用和传统建模方法的“高阶学习”概念,在关注深度神经网络的最新进展的同时,我们介绍了其底层方法(多层感知器、卷积和循环神经网络)和学习范式(监督、无监督和强化学习)。其次,我们讨论了营销经理在其组织中实施人工智能时需要注意的技术陷阱和危险,包括目标函数定义不明确、不安全或不切实际的学习环境、有偏见的人工智能、可解释的人工智能和可控制的人工智能等概念。第三,人工智能将对可以自动化且几乎不需要可解释性的预测任务产生深远影响,我们预测,如果我们不解决人工智能模型和营销组织之间隐性知识转移的挑战,人工智能将在许多营销领域无法兑现其承诺。
缩写 AUC = ROC 曲线下面积;BBB = 血脑屏障;CE = 对比增强;DMG = 弥漫性中线胶质瘤;DMG-A = DMG,H3 K27 改变;DMG-W = 无 H3 K27 改变的中线 HGG;GLCM = 灰度共生矩阵;GLDM = 灰度依赖矩阵;GLRLM = 灰度游程矩阵;GLSZM = 灰度大小区域矩阵;GNB = 高斯朴素贝叶斯;HGG = 高级别胶质瘤;ICC = 类间相关系数;LASSO = 最小绝对收缩和选择运算符;LR = 逻辑回归;ML = 机器学习;MLP = 多层感知器;PCNSL = 原发性中枢神经系统淋巴瘤;RF = 随机森林;ROC = 受试者工作特性;ROI = 感兴趣区域;SHAP = Shapley 加性解释;SVM = 支持向量机。提交于 2022 年 6 月 30 日。接受于 2022 年 11 月 15 日。引用时请注明 2022 年 12 月 23 日在线发布;DOI:10.3171/2022.11.JNS221544。 * KL 和 HC 对这项工作的贡献相同。
我们已经看到过去几年对使用机器学习进行化学和生物学,合成生物学和代谢工程的兴趣越来越不例外[1]。本文回顾了工程生物系统时使用的三种主要技术。在第2节中,我们介绍了受监督和半监督的机器学习技术的概述,提供了搜索混杂酶活性的示例。在第3节中,我们讨论了通常基于监督学习的主动和强化学习方法,并在迭代过程中直接获得培训集。这些方法对设计构建测试的合成生物学周期尤其可以修改。在预测酶活性,优化代谢途径和进行重新生物合成的背景下提供了示例。生活系统中的工程信息处理设备是一项长期的合成生物学企业。然而,在机器学习中发现的基本操作的工程设备的问题在很大程度上尚未探索。第4节提出试图在体外和体内构造的尝试,这是所有人工神经网络的基本单元。
摘要。本文以浮游生物为例,比较了两种在水环境中检测和识别微物体的方法的有效性,这些方法使用了神经网络和各种技术,并使用不同的编程语言开发。首先,研究并应用了传统的检测方法,该方法基于 Gabor 和多层感知器特征的提取,以 MATrixLABoratory (MATLAB) 语言实现。其次,使用 YOLOv5(“You only look once” 的缩写)作为单级神经网络,以 Python 语言实现。介绍了这些方法在浮游生物检测中的工作结果。计算准确度和完整性指标以确定两种方法中的最佳方法。使用检测方法后,获得了带有识别结果的图像,以编程方式计算的性能指标。研究了使用短视频图像进行实时识别的方法应用的有效性。最后,指出 YOLOv5 模型在检测海洋物体(尤其是浮游生物)的任务中表现出了明显优于传统方法的优势。其准确率高出 30%;物体检测的完整性提高了27%。
4.2.4 顺序和批量训练 82 4.2.5 局部最小值 82 4.2.6 拾取动量 84 4.2.7 小批量和随机梯度下降 85 4.2.8 其他改进 85 4.3 实践中的多层感知器 85 4.3.1 训练数据量 86 4.3.2 隐藏层的数量 86 4.3.3 何时停止学习 88 4.4 使用 MLP 的示例 89 4.4.1 回归问题 89 4.4.2 使用 MLP 进行分类 92 4.4.3 分类示例:鸢尾花数据集 93 4.4.4 时间序列预测 95 4.4.5 数据压缩:自联想网络 97 4.5 使用 MLP 的秘诀 100 4.6 推导反向传播 101 4.6.1 网络输出和误差 101 4.6.2 网络误差 102 4.6.3 激活函数的要求 103 4.6.4 误差的反向传播 104 4.6.5 输出激活函数 107 4.6.6 另一种误差函数 108 进一步阅读 108 练习题 109
摘要 - 在网络链接上预测带宽利用率对于检测拥塞以在发生之前对其进行纠正非常有用。在本文中,我们提出了一种解决方案,可以预测不同网络链接之间的带宽利用率,其精度非常高。创建了一个模拟网络,以收集与每个接口上网络链接的性能有关的数据。这些数据通过功能工程进行处理和扩展,以创建培训集。我们评估和比较了三种类型的机器学习算法,即Arima(自回归的集成移动平均线),MLP(多层感知器)和LSTM(长期短期记忆),以预测未来的带宽消耗量。LSTM的表现优于Arima和MLP,其预测非常准确,很少超过3%的误差(Arima为40%,MLP为20%)。然后,我们证明建议的解决方案可以通过由软件定义网络(SDN)平台管理的反应实时使用。索引术语 - 国王检测,LSTM,MLP,Arima,实时带宽预测
摘要:“情绪”一词指的是个人对事件、人或条件的反应。近年来,研究情绪估计的论文数量有所增加。在本研究中,分析了一个基于三种不同情绪的数据集,该数据集用于使用脑电波对感觉进行分类。在数据集中,六个电影剪辑被用来引出男性和女性的积极和消极情绪。然而,没有触发引发中性情绪的触发器。已经使用各种分类方法来对数据集进行分类,包括 MLP、SVM、PNN、KNN 和决策树方法。研究人员表示,首次使用的 Bagged Tree 技术在本研究中取得了 98.60% 的成功率。此外,使用 PNN 方法对数据集进行了分类,成功率达到 94.32%。关键词:AdaBoost;袋装树;EEG 信号;情绪预测;多层感知器;概率神经网络 1 引言
由于其有效的性能,卷积神经网络(CNN)和视觉变压器(VIT)架构已成为解决计算机视觉任务的标准。此类架构需要大量的数据集,并依靠卷积和自我注意操作。在2021年,MLP-Mixer出现了,与CNN和VIT相比,仅依赖于多层感知器(MLP)并取得极具竞争力的结果。尽管在计算机视觉任务中表现良好,但MLP混合体架构可能不适合图像中的精制功能提取。最近,提出了Kolmogorov-Arnold网络(KAN)作为MLP模型的有希望的替代品。kans有望提高与MLP相比的准确性和可解释性。因此,目前的工作旨在设计一种新的基于混音器的架构,称为Kan-Mixers,使用KAN作为主要层,并根据几个性能指标在图像分类任务中评估其性能。作为主要结果,Kan-Mixers模型在时尚摄影和CIFAR-10数据集中优于MLP,MLP-Mixer和KAN模型,分别为0.9030和0.9030和0.6980,分别为平均精度。
研究表明,基于静息状态功能磁共振成像(fMRI)数据,随机SVM群集方法具有协助ASD辅助诊断的潜力。12研究人员使用自闭症脑成像数据交换(ABIDE)数据集中的脑成像数据来识别ASD。此处使用了带有反向传播算法的多层感知器。13论文讨论了移动自闭症风险评估工具。为移动设备设计,该计划可早日确定有自闭症谱系状况的风险。他们使用二进制萤火虫算法,其精度为91-92%。14研究人员使用众包获取信息。他们收集了许多自闭症和多动症患者以及正常成长的人的临床测试和行为观察。他们使用的精度为60至90%的SVM算法。15这些研究使用了精度为89%的SVM随机算法。16-18研究提供了一种机器学习方法来预测任何年龄段的自闭症症状。研究
本文从知识创造和知识转移的角度探讨了人工智能在营销中的陷阱和机遇。首先,我们讨论了“高阶学习”的概念,这一概念将人工智能应用与传统的建模方法区分开来,在关注深度神经网络的最新进展的同时,我们还介绍了其底层方法(多层感知器、卷积和循环神经网络)和学习范式(监督、无监督和强化学习)。其次,我们讨论了营销经理在其组织中实施人工智能时需要注意的技术陷阱和危险,包括目标函数定义不明确、学习环境不安全或不切实际、有偏见的人工智能、可解释的人工智能和可控制的人工智能等概念。第三,人工智能将对可以自动化且几乎不需要可解释性的预测任务产生深远影响,我们预测,如果我们不解决人工智能模型和营销组织之间隐性知识转移的挑战,人工智能将在许多营销领域无法兑现其承诺。 © 2020 直销教育基金会,Inc. dba Marketing EDGE。保留所有权利。