Petahertz或Lightwave,电子产品使用量身定制的光波形来控制Petahertz频率的电子电路中的电荷载体。这可能比传统的脉冲电子设备更快地处理,该脉冲电子不能超过Gigahertz频率。近年来,已经在固态系统和纳米级结构中测量了由光场驱动的PETAHERTZ尺度电流,并在次体 - 菲姆特周期到几尺度至几尺尺度的次光线循环电流生成和光场分辨波形检测中进行了几项原理证明。最近的工作通过探索光场驱动的逻辑和内存功能采取了第一步,迈出了数字和量子操作。在这篇综述中,我们讨论了亚周期磁场驱动的电流注入的进展,突出了关键的理论概念,实验里程碑和问题,因为我们朝着实现Petahertz Electronics进行超快光波形分析,数字逻辑,通信和量子计算时仍存在问题。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介