在21世纪之交附近,弱规模上的超级主体理论预测的引人注目的签名激发了即将到来的实验中对新发现的预期,例如大型强子对撞机和下一代地下暗物质直接检测实验(1,2,2,3)。因此,高能物理学领域的大部分活动都是由一小部分常见范式驱动的,而这些范式可能超出了标准模型。今天,尽管这种实验的持续操作当然很可能很快可能很快发现了Electroweak(〜TEV)量表附近的新物理学,但可能已经大部分的发现潜力已经耗尽了。这种状况导致社区的先验放松了新的物理学,首先要揭露新物理学的地方(4)。例如,尽管发现暗物质与标准模型的其他基本问题(例如层次结构问题)相关,但没有理论上具有吸引力,但没有第一个原理的原因。,高能的新物理学也可能超出了最强大的未来攻略者的范围。但是,即使这是真的,能量极高的动态也会引起新的虚弱耦合的低能自由度,激励观察性签名,这些观察性签名可用于小规模的精确实验。受到先验的这些转变和数据的渴望,许多高能物理学家,牙的和实验家都已经深入参与了构思和开发针对新物理学低能标志的小规模探针(8,9)。这种假设颗粒的两个例子以及本综述的重点是“轴轴”和“暗光子”,即普通锥形和光子的暗区类似物,它们在涉及额外维度和量规耦合统一的理论中无处不在(5,6,7)。这些努力涵盖了许多不同的子场,涉及凝聚态物理,原子物理学和量子信息科学之间的联系。与二十年前相比,高能物理界发现自己处于多元化增加的健康状态。在本综述中,我们旨在为对实验室精确探针和深色光子的非专家提供有用的切入点。在过去的二十年中,有多种文章(例如,参见参考文献。(10,11)),该)调查了当时的最著名实验方法的发展,例如cav-
虽然共聚焦显微镜是生物医学成像实验室的主力,为图像对比度和质量树立了黄金标准,但逐点获取图像的速度本来就很慢。为了突破这一速度障碍,Photon Force 客户使用 PF32 构建了开创性的多光束共聚焦显微镜架构:用光束阵列取代典型共聚焦显微镜的单光束和针孔,以快速扫描图像平面。返回点与 SPAD 阵列的感光区域对齐,这些区域充当虚拟针孔,可阻挡失焦光。由于每个光束和 SPAD 阵列像素对都完全独立且并行运行,因此最终的系统可以将共聚焦荧光寿命显微镜的速度提高几个数量级。
光子雪崩(PA)纳米材料表现出任何材料报告的最非线性光学现象,从而使它们可以推动从超分辨率成像和超敏感的感官到光学计算的应用的边界。,但PA仍然笼罩在神秘之中,其基本的物理和局限性被误解了。光子雪崩实际上并不是雪崩光子的,至少不是像雪球在实际雪崩中更多地滚雪球一样。在这篇重点文章中,我们在基于灯笼的纳米颗粒中消除了PA围绕PA的这些和其他常见的神话,并揭示了这种独特的非线性光学效应的奥秘。我们希望消除雪崩纳米颗粒的误解将激发新的兴趣和应用,以利用PA在广泛的科学领域的巨大非线性。
通过DAT光谱的纹状体多巴胺转运蛋白结合的可视化允许评估突触前多巴胺能赤字。提议异常的DAT-SPECS扫描支持PD,DLB或其他神经退行性帕金森综合症的诊断,而有症状的患者中的正常DAT-SPECT扫描支持诊断疾病,不影响肿瘤性多巴胺疗法途径。但是,有很大一部分临床诊断的PD患者没有表现出降低的DAT-SPECT结合。临床诊断为PD的患者(出现正常的Dat-specs扫描)在文献中被称为“没有多巴胺能赤字证据的扫描”(Swedd)。尽管其中许多患者最终被诊断出患有非PD综合征,但一部分患有正常DAT-SPEC成像的患者被证实具有参考标准的PD。其他研究可能会阐明这些情况。
解决方案,完全消除电子噪声以及光谱图像数据集的稳定可用性。尤其是,新技术在骨结构的象征方面表现出了希望。最近,将PCD-CT插入了临床常规中。这篇综述的目的是结论最近的研究,并展示我们在肌肉骨骼放射学领域使用光子计数检测器技术的第一个经验。我们使用MEDLINE进行了文献搜索,其中包括90篇文章和评论,涵盖了新技术的最新实验和临床经验。在本综述中的结果和结论中,我们重点介绍(1)良好解剖结构的空间分辨率和描述,(2)辐射剂量的减少,(3)电子噪声,(4)金属伪像还原的技术和(5)光谱成像的可能性。本文提供了我们对光子计数检测器技术的首次体验的见解,并显示了实验和临床研究的结果和图像。
QCi 专利,用于巨型单光子非线性的设备和方法,https://patents.google.com/patent/US11754908B2/en Z Li 等人,片上可逆全光逻辑门,Optics Letters 49 (12),(2024) Z Li 等人,片上参数全光调制,Physical Review Applied 21 (6),(2024) Huang, Yu-Ping 等人,“用于单原子和单光子量子比特通用计算的无相互作用和无测量量子芝诺门。”Physical Review A (2008) Huang, Yu-Ping 等人,“通过量子芝诺效应实现无相互作用全光切换。”Physical Review A 82, no. 6 (2010) Huang, Yu-Ping 等人“χ2 微盘中的无相互作用量子光学 Fredkin 门。”IEEE 量子电子学精选期刊 18,第 2 期 (2011) McCusker, Kevin 等人。“通过量子芝诺效应实现无相互作用全光切换的实验演示。”物理评论快报 110,第 24 期 (2013) Sun, Yu-Zhu 等人,“通过量子芝诺阻塞实现光子非线性。”物理评论快报 110,第 22 期 (2013) Chen, Jia-Yang 等人。“芯片上量子芝诺阻塞的观察。”科学报告 7,第 1 期 (2017) Jin, Mingwei 等人。“铌酸锂薄膜上的高消光电光调制。”光学快报 44,第 5 期 (2019) Chen, Jia-Yang 等人。“高效铌酸锂赛道微谐振器中的准相位匹配频率转换。”《相干性和量子光学》,Optica Publishing Group,(2019 年)
2000 年至 2019 年间,全球研发支出从 7250 亿美元增至 2.419 万亿美元(以美元购买力平价计算),全球年增长率为 6.4%,而全球 GNP 增长率为 3.5%。全球研发支出的分布发生了根本性变化(见图 1)。与欧洲一样,北美(主要由美国主导)在 2000-2010 年期间的头十年全球竞争中的市场份额下降,从 2000 年的 40% 下降到 2010 年的 31%。然而,在过去十年中,欧洲和美国均未能重新获得任何“市场份额”,研发支出的年增长率都接近。它们对全球研发支出的贡献保持稳定,从全球支出的 23% 降至 22%(欧洲),从 31% 降至 29%(美国+加拿大)。同期,中国对全球研发支出的贡献从 2000 年的 329 亿美元(占全球研发支出的 4.5%)增加到 2019 年的 5257 亿美元(占支出的 21.7%)。这意味着过去二十年,中国研发支出每年增长 15.7%。然而,增长正在放缓(2000 年至 2010 年间增长超过 20%,第二个十年增长约 10%)(见表 1)。1
从量子 2.0 所包含的原则发展而来的技术解决方案有望在医疗保健、通信、能源和安全等众多应用领域提供增强的差异化功能。光子学在许多这些解决方案中发挥着推动作用,既是主要技术,也是支持技术,有助于实现稳定、稳健的解决方案。本次会议重点关注光子学作为量子科学和工程领域的推动者的作用。主题包括光子学在计算和模拟、网络和通信、精确计时以及传感和成像等领域的作用。还包括在这些应用中利用光子学的量子材料、组件和设备的研究、开发和使用。本次会议旨在汇集学术界、政府和工业界的国际专家,传播和讨论光子学作为量子技术领域推动者的最新成果。本次活动高度重视与会者有充足的时间进行讨论和交流,以增强会议体验。欢迎提交关于光子学作为量子科学和技术的推动能力的各个方面的原创成果,特别关注以下领域:
光子是量子信息的天然载体,因为它们易于分布且寿命长。本论文涉及单光子量子信息处理的各个相关方面。首先,我们通过广义的 N × N 对称分束器(称为贝尔多端口)演示 N 光子纠缠的产生。可以生成各种各样的 4 光子纠缠态以及 N 光子 W 态,成功概率出乎意料地随着 N 而呈非单调递减趋势。我们还展示了如何使用相同的设置来生成多原子纠缠。对多端口的进一步研究还使我们得到了 Hong-Ou-Mandel 倾角的多粒子概括,它适用于所有具有偶数个输入端口的贝尔多端口。接下来,我们演示了一种基于广义线性光学的光子滤波器,无论涉及的光子数量有多少,它都具有恒定的成功概率。该滤波器具有最高的报告成功概率并且具有干涉稳定性。最后,我们展示了如何仅使用线性光学资源,以单位成功概率在两个远距离节点上执行重复直至成功的量子计算。我们进一步表明,使用非同一光子源,仍然可以实现稳健性,这说明了基于测量的量子计算的性质和优势。直接应用于相同的设置自然会导致按需生成任意多光子状态。最后,我们展示了如何在没有线性光学的情况下从杨氏双缝实验中两个原子的发射中检测到光子的偏振纠缠,从而使两个原子也最大程度地纠缠。