摘要:在研究和工程中,短激光脉冲是计量和通信的基础。由于紧凑的设置尺寸,通过被动模式锁定的脉冲产生特别理想,而无需主动调制需要专用的外部电路。但是,完善的模型并不能涵盖比型往返时间更快的增益媒体中的常规自动化。对于量子级联激光器(QCLS),这标志着其操作中的显着限制,因为它们表现出与间隔过渡相关的picsecond增益动力学。我们提出了一个模型,该模型对最近证明的第一个被动模式锁定的QCL的脉冲动力学提供了详细的见解。存在沿空腔的多层石墨烯所实现的不连贯的饱和吸收器的存在,通过表现出与增益介质相似的快速恢复时间,将激光驱动到脉冲状态。这种激光操作的预先未研究的状态揭示了增益培养基对不均匀分布的腔内强度的良好响应。我们表明,在存在强
碳材料显示出有趣的物理特性,包括在石墨烯中发现的超导性和高度各向异性的热导率。压缩应变可以在碳材料中诱导结构和键合跃迁并创建新的碳相,但是它们与导热率的相互作用仍然在很大程度上没有探索。我们使用Picsecond瞬时热室内和第一原理计算研究了压缩石墨阶段的原位高压导热率。我们的结果表明,在15 - 20 GPA时峰值至260 W = MK峰值,但降至3。0 W = 〜35 GPA的MK。与免费的原位拉曼和X射线衍射结果一起,压缩碳的异常热导率趋势归因于声子介导的电导率,受层间屈曲和SP 2的影响,SP 2转换为SP 3过渡,然后,M-Carbon Nanocrystals和Nananocrystals和Nananocrystals和Amorphous Carbos的形成。应变诱导的结构和键合变化提供了碳材料中热和机械性能的广泛操作。
金属中的声子散射是材料科学中最基本的过程之一。但是,了解此类过程仍然具有挑战性,需要有关声子与电子之间相互作用的详细信息。我们使用超快速电子弥漫性散射技术来解决时间和动量中的飞秒激光器激发剂的钨中的非平衡声子动力学。我们确定声子模式的瞬态群体,这些群体表现出通过电子 - 音波耦合引发的强动量依赖性。对于布里远区域边界附近的声子,我们在大约1皮秒上观察到其人口的短暂上升,这是由强烈的电子 - 音波耦合驱动的,然后在大约8个picsecond的时间表上缓慢衰减,由弱声子 - 音音子释放过程控制。我们发现,隔离这两个过程需要钨的特殊谐波,从而导致纯金中的长期非平衡声子。我们发现电子散射可能是金属声子热传输的决定因素。
蛋白质中的电荷转移反应对生命很重要,例如修复DNA的光溶酶中,但结构动力学的作用尚不清楚。在这里,使用飞秒X射线晶体学,我们报告了电子沿着果蝇(6-4)光解酶中电子四个保守的色氨酸链传递时发生的结构变化。在Femto和Picsecond延迟时,第一个色氨酸对黄素的光摄影导致在关键的天冬酰胺,保守的盐桥和附近水分子的重新安排上引起定向的结构反应。我们检测到电荷诱导的结构变化,接近第二个色氨酸到20 ps的第二个接近的结构变化,将附近的蛋氨酸鉴定为氧化还原链中的活跃参与者,从第四次色氨酸附近的20 ps鉴定。光解酶经历了其结构的高度定向和仔细的定时适应。这质疑马库斯理论中线性溶剂响应近似的有效性,并表明进化已经优化了快速蛋白波动以进行最佳电荷转移。
在这里,𝑡是开始时间,𝜏是步骤𝑗的上升时间。为了使拟合过程更加稳健,我们忽略了实验时间分辨率(IRF FWHM〜145 fs),这是根据子picsecond数据集的拟合确定的。分子阶段的开始和上升时间(光载量分数)𝛾0由于留置状态,分别固定在𝑡0= 0 = 0 = 0 = 0 =141𝑓𝑠,1-2,4-7。这留下了分子和次级自旋转换步骤𝛾0和𝛾1,孵育周期𝑡1和次级自旋转换时间尺度𝜏1作为拟合变量。拟合结果在补充表1中列表。对于以25 mJ/cm 2的激发能力收集的数据,不受限制的拟合导致𝛾0 + 𝛾1> 1,表明在探测范围内完成了完全的纳米棒自旋转换。为了确保𝛾0 + 𝛾1≤1,因此我们固定了1至0.72。对于使用70 MJ/cm 2和100 mJ/cm 2收集的数据,未解决孵育周期,因此我们将𝑡1固定为零,以提高拟合稳定性。我们注意到,我们已经在子picosecond范围内收集了两个独立的数据集,激发通量为100 mJ/cm 2,并且扩展了〜70 PS范围。对于两个数据集,拟合的分子阶梯幅度𝛾0都很好地一致。对于10 mJ/cm 2,
富含库仑结合的准粒子的物理学,例如激发剂和过渡金属二甲基元素单层中的trions,目前在冷凝的物质群落中正在进行深入研究。这些准颗粒在100 MEV的顺序上具有较高的结合能,表现出强烈的光耦合,并且可以将量子信息存储在自旋valley自由度中[1]。实现超快时间标准上激素状态的外部控制的策略已成为重要的研究途径。在这里,我们报告了在HBN封装的Mose 2单层中观察到瞬态Trion到脱位的转换(图1a)是由在红外自由电子激光设施(Felbe)(Felbe)[2,3]产生的Picsecond TimeScales上的强烈Thz脉冲引起的。随后通过用条纹摄像头记录时间分辨的光量(TRPL)光谱来监测激子动力学。可见的脉冲(= 400 nm)激发了激动的激子和Trions的种群(图1b,无脉冲脉冲的trpl光谱)。通过在大约30次皮秒延迟后添加THZ脉冲相对于可见的激发(图1C),我们观察到Trion发射的淬火和激发激素发射的暂时增亮。此外,通过调整Thz脉冲的频率,我们记录了TRIONS的THZ解离光谱(图1d)。重要的是,当THz光子能量等于或高于Trion结合能时,可以观察到有效的Trion TRION转换。在其他机构中观察到THZ辐射的相似影响,例如WSE 2单层和Mose 2 /WSE 2异质结构。总的来说,结果为低维材料中的许多粒子状态的外部控制开辟了有希望的途径。
jbokor@berkeley.edu Spintronics领域涉及对固态设备中的旋转和电荷运输的研究。超快磁性涉及使用飞秒激光脉冲来操纵子秒时尺度上的磁性,包括无螺旋性无依赖性的全光开关。我们通过使用超快光电传输(Auston)开关使用Picsecond电荷电流脉冲结合了这些现象(图1)诱导铁磁GDFECO薄膜磁化的确定性,可重复的超快逆转[1]。使用9 ps持续时间电流脉冲,磁化强度在〜10 ps中反转,比任何其他电气控制的磁开关都要快一个数量级,并且展示了不需要旋转偏光电流或旋转旋转转移/Orbit/Orbit torques的根本新的电气开关机制。(图2)此外,开关所需的能量密度较低,投影仅需4 fj即可切换A(20 nm)3个单元。通过非平衡热激发的这种超快磁化逆转现象主要限于基于GD的Ferrimagnet,例如在图2所示的实验中使用的GDFECO合金。1和2。为了将这种快速开关与读数集成,需要具有高隧道磁力电阻(TMR)的磁性隧道连接。然而,对于使用GDFECO的设备报告的TMR值太小(≈0.6%),用于实际应用[2]。在存在面内对称性磁场的情况下,将电流脉冲应用于重金属/铁磁性薄膜异质结构。因此,切换具有独立光学脉冲的铁磁铁非常有趣,然后可以在高TMR存储器单元中作为存储层实现。We have shown how to transfer the ultrafast switching of GdFeCo to a ferromagnet (in our case Co/Pt multilayers) using Ruderman–Kittel–Kasuya– Yosida (RKKY) exchange coupling mediated HI- AOS of the ferromagnet layer driven by the HI-AOS of the ferrimagnet layer [3, 4].该技术通常适用于其他铁磁体,然后可用于使用高TMR的开关磁性结构状态进行MTJ读数。我们还表明,6-10 ps持续时间电流脉冲可用于直接和确定性地切换通过自旋 - 轨道扭矩(SOT)[5]的铁磁薄钴膜的平面外磁化。取决于相对电流
F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。 Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。F. Kikuchi,Q。Liu,H。Hanada,N。Kawano,K。Matsumoto,T。Iwata,S。Gossens,K。Asari,Y。Ishihara,S。Tsuruta,S。 S. Sasaki,使用多个场景和Samousid的两个子卫星(Kugiya)的Picsecond精确度VLBI,无线电科学,44,1-7,2009。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。 H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,H。Hanada,Y。Harada,X。Shi,Q. Huang,T。Ishikawa,S。Tsuruta,K。K. Asari Namiki,S。Sasaki,S。Ellingsen,K。Sato,K。Shibata,Y。Tamura,T。Jike,K。Iwadate,O。Kameya,J。Ping,B。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,, S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。H. Hanada,T。Iwata,Q. Liu,F。Kikuchi,K。Matsumoto,S。Gossens,Y。Arada,K。Assari,T。Ishikawa,Y。Ishikawa,Ishikawa, N. Namki,Y。Kono,K。Iwadate,O。Kameya,K。M。Shibata,Y。Tamura,S。Kamate,Y。Yahagi,W。Masui,W。Masui,K。Tanaka,Mijima,Mijima,X. Schlüter,《 Selene(Kaguya)的月球轨道的差异概述》(Kaguya),以确定精确的轨道确定和月球革命性和月球Graydy,太空科学评论,154,123-144,,S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。S. Gossens,K。Matsumoto,Q. Liu,F。Kikuchi,K。Sato,H。Hanada,Y。Hanada,h。使用Selene相同梁差异VLBI跟踪数据的重力场测定,Geodesy杂志,85,205-228,2011。J. Yan,S。Goossens,K。Matsumoto,J。Ping,Y。arada,T。Iwata,N。Namiki,N。Namiki,F。Li,G。Tang,G。Cao,J。Cao,H。Hanada和N. Kawano,N。Kawano,N。Kawano,CEGM02:使用Rang'e-1 Orbital Tracking Data,Plane and Plane and Plane and Plane and Plane and Plane and PlaneTary Data,Plane,科学,62,1-9,