FASTRAK 是 Polhemus 的商标,版权所有 © 2008 Polhemus,修订于 2017 年 11 月 ST:MSO28 Microsoft Windows 是 Microsoft Corporation 的注册商标。Linux 是 Linus Torvalds 的注册商标。Polhemus 是符合美国 FDA 法规的良好生产规范 (GMP) 合同制造商。我们不是医疗设备制造商。Polhemus 系统未获得医疗或生物医学用途认证。任何提及医疗或生物医学用途的内容都是医疗公司在获得所有必要或适当的医疗认证后对产品所做处理的示例。最终用户/OEM/VAR 必须遵守与医疗设备开发和销售有关的所有相关 FDA/CE 法规以及所有其他监管要求。
FASTRAK 是 Polhemus 的商标,版权所有 © 2008 Polhemus,修订版。2017 年 11 月 ST:MSO28 Microsoft Windows 是 Microsoft Corporation 的注册商标。Linux 是 Linus Torvalds 的注册商标。Polhemus 是美国 FDA 法规下的良好生产规范 (GMP) 合同制造商。我们不是医疗设备制造商。Polhemus 系统未获得医疗或生物医学用途认证。任何对医疗或生物医学用途的提及都是医疗公司在获得所有必要或适当的医疗认证后对产品所做工作的示例。最终用户/OEM/VAR 必须遵守与医疗设备开发和销售有关的所有相关 FDA/CE 法规以及所有其他监管要求。
“我喜欢 Polhemus G 4 追踪器,因为和 Virtusphere 一样,它最接近自然环境。”Ray Latypov,Virtusphere 首席执行官 想象一下,踏入一个看起来像人形沙鼠轮的东西,完全沉浸在被球体包裹的虚拟现实世界中——只需单击按钮,这个球体就会改变您的整个环境。有无数可能的场景可供探索,您可以进行挑战极限的艰苦越野跑,游览莫斯科的城市景点,甚至在分秒必争的战场上测试您的反应能力。这些场景都是通过虚拟现实运动模拟器 Virtusphere 实现的。Virtusphere 利用 Polhemus G 4™ 6DOF 无线运动追踪器,因为它具有便携性、无缝追踪功能以及提供位置和方向的事实。 Ray Latypov 演示 Virtusphere 的功能 工作原理 — 完全沉浸感 Latypov 兄弟是 Virtusphere 背后的智囊。Virtusphere 首席执行官 Ray Latypov 和首席技术官 Allan Latypov 开发了这个想法并完善了 Virtusphere 产品。它的工作原理类似于计算机鼠标上的巨型轨迹球。10 英尺的空心球安装在一个特殊平台上,允许用户 360 度自由旋转。用户佩戴头戴式显示器,球体设计允许他们行走、跳跃或奔跑,因为他们完全沉浸在虚拟环境中。无线 G 4 为用户提供完全自由
Steffiny 和 Rob Chisholm Cooley LLP Jason 和 Sarah DiLullo Martha Ehmann Conte EY Todd 和 Deborah Frederick George W. Bauer 家庭基金会 Judith 和 Timothy Hachman #HalfMyDAF Te Hamlin 学校 JMA Ventures, LLC Mark Karvosky 和 Nicole Elliott-Karvosky Burke's Heather 和 Clint Kollar Bora Lam Sandra Lee Jess Lifton Maria 和 Peter Lukens 国家教育机会伙伴关系 Michael 和 Naomi Neruda Yume Nguyen 和 Umang Mehta Brendan 和 Leslie O'Neil Joshua 和 Jennifer Peck Peter E. Sills 家庭基金会 Leslie 和 Rick Polhemus Annie Robinson Woods 和 F. Montgomery Woods
摘要:在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了确定飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术来执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器获取过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,我们采用自修复神经模型 (SHNM) 来预测缺失数据。用于恢复的数据有 5200 个头部运动的 6-DoF 样本。SHNM 可实现超过 85% 的准确率来预测三组不同的缺失数据。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型
摘要。在航空电子设备中,飞行员使用头盔显示器 (HMD) 在护目镜上显示外部环境的同步视图和与飞机相关的重要参数。为了完美同步护目镜上的视图,必须同步外部环境的坐标以及飞行员头部运动的坐标。为了定位飞行员头部运动的坐标,称为头部跟踪的过程起着重要作用。头部跟踪可以使用不同的跟踪技术执行,例如光学跟踪、磁跟踪或惯性跟踪。在本文中,六自由度 (6-DoF) 磁运动跟踪装置 (Polhemus Patriot TM ) 用于在模拟器床上实时获取飞行员头部运动的坐标。在跟踪器采集过程中,由于铁磁性引起的磁场干扰,数据可能会丢失。为此,采用自修复神经模型 (SHNM) 来预测丢失的数据。用于恢复的数据有 5200 个 6-DoF 头部运动样本。SHNM 对三组不同的缺失数据的预测准确率超过 85%。将所提模型预测数据的准确率与反向传播神经网络 (BPNN) 模型进行了比较,结果发现 SHNM 模型的准确率优于 BPNN 模型