2.1 GPS 的三个部分................................................................................................................4 2.2 GPS 卫星星座....................................................................................................................4 2.3 GPS 设备....................................................................................................................5 2.4 载波................................................................................................................................6 2.5 调制在各个载波上的信息.......................................................................................7 2.6 C/A 和 P 码....................................................................................................................8 2.7 单点定位....................................................................................................................11 2.8 相对定位....................................................................................................................12 2.9 静态和动态定位....................................................................................................13 2.10 实时和任务后处理.....................................................................................................14 2.11 仰角和遮蔽角.....................................................................................................15 2.12 方位角.....................................................................................................................
今天,SWEPOS 是瑞典国家参考系统 SWEREF 99 的基础,此外,它还用于许多测量和导航应用,包括气象学、计时应用和机器导航。SWEPOS 提供以下定位服务:• 通过 WWW/FTP 服务进行数据后处理• SWEPOS 网站上的 SWEPOS 自动计算服务• 瑞典公司 Cartesia 运营的 DGPS 服务 Epos• SWEPOS 网络 RTK 服务• SWEPOS 网络 DGNSS 服务本文将介绍使用这些服务和设计它们的经验。本文还讨论了这些服务的财务和组织问题。这些服务目前应用的例子有地籍测量、带有位置相关信息的数据库数据捕获、放样和机器导航。未来的预期应用包括高精度导航等。
航空测绘实践的精确机载 GPS 定位替代方案 Mohamed M. R. MOSTAFA,加拿大 关键词:GPS、机载、摄影测量、测绘、地理配准、遥感 摘要 来自 GPS 测量的定位信息已成为当今许多航空测绘系统的可靠组成部分。但是,在使用 GPS 进行机载测绘时通常面临的后勤限制之一是需要 GPS 接收器在勘测区域的一个或多个基站收集连续数据(例如始终在飞机 30-50 公里范围内设立一个基站)。虽然使用此类数据是满足当今最苛刻的大规模航空勘测应用的精度要求的一种手段,但当勘测在偏远或难以到达的地形上进行时,建立基站通常是一项艰巨的任务。此外,即使建立了专用基站,由于环境影响、接收器错误或人为错误,数据的连续性也并不总是能得到保证。考虑到这些要点,本文的目的是评估在不建立专用 GPS 基站的情况下获得可靠和准确的测量飞机位置估计值的可能性。这里使用了三种方法。第一种方法是利用现有连续运行参考站 (CORS) 网络提供的数据来估计飞机的位置。虽然此类站点通常距离测量区域相当远(例如50 到 500 公里),但它们的数量通常很大,并且它们的数据通常是免费提供的。第二种方法是使用 IGS 产品,其中精确的轨道和卫星时钟校正是在事后获得的,并在单点定位模式下使用。第三种方法是使用实时可用的卫星差分校正。这项分析使用了美国和日本过去三年进行的实际测绘任务的大量真实数据集。初步测试结果和分析结果将进行介绍和详细讨论。这些方法的直接好处包括精确定位航空测量应用,例如 GPS 辅助空中三角测量,以及生成外部方向参数,用于航空胶片或数码相机、激光雷达和 SAR 的直接地理参考。
nAVStAr 1 全球定位系统 (GpS) 是第一个卫星导航系统,它使用户能够在十亿分之一秒内精确确定三维位置和时间,从概念发展为全面运作的系统仅用了二十多年时间。但这并不意味着推销这个想法很容易。早在 1969-1970 年,航空航天公司总裁兼 GpS 先驱伊万·盖廷就曾向理查德·尼克松总统的科学顾问李·杜布里奇建议成立一个总统委员会来审查卫星导航应如何进行,因为有太多的潜在用户。经过数周的思考,杜布里奇得出结论,执行盖廷的提议太难了。他告诉盖廷,“涉及的人太多,官僚机构太多,政治太多,机构太多。为什么不像我们以前那样让空军开发它呢?” 2
陆军 PNT RA 的作战范围包括部署和驻地所有处于各种威胁条件下的作战和机构陆军部队。陆军 PNT RA 的技术范围包括 PNT 模块,该模块包括向 PNT 客户端系统分发有保证的 PNT 信息的能力,以及 PNT 源,即 PNT 模块内部或外部的设备、系统或传感器,提供能够确定当前位置、速度和时间的信息:GPS 卫星、伪 GPS 卫星和非 GPS PNT 源。它还包括 PNT 模块接口和这些接口的标准。(注:本版 PNT RA 未涉及使用伪 GPS 卫星的指挥和控制 [C2] 能力。如果有必要的信息可用,它们将包含在版本 2.0 中;否则,它们将包含在版本 3.0 中。多个安全域相关功能超出了 PNT RA 的范围,因此未包括在内。)
其他产品特性 • 威慑监视 • 整体式多协议 (Coaxitron ® 、RS-422 Pelco D 和 Pelco P 协议) 接收器 / 驱动器 • 使用 Pelco D 协议的数字位置和变焦控制和反馈 • 整体式摄像机外壳 • 可变速度 0.1 至 100°/秒 • 360° 连续水平旋转 • +33° 至 -83° 倾斜范围 • 可在 90 英里/小时的风速下工作,可承受高达 130 英里/小时的风速 • 水平预置位速度在 50 英里/小时的风速下为 100°/秒,在 90 英里/小时的风速下为 50°/秒 • 可变扫描速度 (1 至 40°/秒) • 用于选定竞争协议的转换板 • 易于安装;快速简便的电气连接 • 24 VAC 或 120/230 VAC 可选 • 专为最低限度的维护而设计,无需调整齿轮 • 完整的连续工作保修 • 850 nm 和 950 nm 主动红外照明聚焦算法(仅限 24X 和 35X 型号)
自主导航等等。尽管全球定位系统 (GPS) 已成为室外定位系统最受欢迎的示例之一,但它无法在室内环境中提供高精度定位,因为 GPS 信号(即射频 (RF))无法很好地穿透建筑物墙壁,从而导致破坏性误差,无法在矿井和地下环境中使用 [1-3]。目前,已有多种不同技术被用于 IPS,例如超声波 [4]、无线电波 [5]、[6]、射频识别 (RFID) [7]、[8]、Zigbee、蓝牙 [9] 和超宽带 (UWB) [10]。基于超声波的室内定位系统 (IPS) 具有较大的测距和定位误差(精度为 10 厘米范围),因为其波长通常较大,并且声速受环境温度的影响 [11]。基于 RF 的定位面临多个问题,包括电磁 (EM) 辐射,这限制了基于 RF 的系统在某些领域(即医疗等)的使用。此外,RF 信号 (i) 受室内环境中多径效应的影响,从而增加定位误差;以及 (ii) 受可用频谱的限制,而频谱非常拥挤。RFID 和 UWB 借助专用基础设施和特殊设备识别定位信号。其他定位方法,如基于 Zigbee 和蓝牙的系统,容易受到信号源波动的影响。
• SV02 于 2018 年 8 月 10 日宣布可供发射 (AFL)。航天器处于短期存储状态 • SV03 于 2018 年 9 月 20 日完成声学测试 • SV04 处于热真空室测试中;目前正在进行闭门测试 • SV05 完全匹配的车辆进入装配线流程 • SV06 任务数据单元于 2018 年 9 月 19 日安装在有效载荷模块上 • SV07 目前处于组装阶段
随着全球定位系统 (GPS) 的出现,航海者现在可以比以前更加精确地导航。本讨论重点关注航海图在绘制 GPS 接收器位置时的固有局限性。对于海图制作者来说,海图的准确性必须考虑到航海员视力敏锐度、所用的平版印刷工艺和绘图技术以及特征符号化(例如线宽)的局限性。GPS 用户在使用与 GPS 不同的基准在海图上绘制 GPS 得出的位置时,必须确保进行纬度/经度偏移。所有新的 NGA 海图均基于 WGS 基准编制,该基准与 GPS 接收器在默认基准设置中使用的基准相同,但通常可以选择其他基准。在实施 GPS 之前得出的位置是使用各种光学仪器确定的,这些仪器专注于导航辅助设备、海岸特征或天体。由于了解这些方法的局限性,海员们对海图上描绘的危险物避而远之,包括助航设备、浅滩和障碍物。海图制作者用来定位危险物的可用导航信息和制图过程比海图用户可用的导航手段更准确。现在情况发生了逆转;使用 GPS,海员现在可以获得比用于编制海图的数据更准确的位置定位。由于 GPS 提供了这样的精度,海员现在需要
免责声明 本学术研究论文中表达的观点均为作者的观点,并不反映美国政府或国防部的官方政策或立场。根据空军指令 51-303,本文不受版权保护,但属于美国政府的财产。