● 即时价值:售前团队在处理交易时没有充裕的时间,因此我们希望用户从开始使用 Vivun 平台的第一天起就能获得来自我们 AI 的指导。● 持续学习:随着市场和竞争的不断发展,平台的预测和建议能力也应不断发展。我们的机器学习模型会随着时间推移适应不断变化的动态和 Vivun 客户提交的新数据。● 可解释性:我们通过 AI/ML 工作得出的见解需要公司中的每个人都可以访问和采取行动——对数值输出(即我们的英雄分数)提供清晰简洁的解释,并就下一步应采取的措施提供规范性建议,而不是“黑匣子”解决方案。
由于新的方式和更高的预期药物浓度,蛋白质生物药物的制定发展变得越来越具有挑战性。药物供应的约束以及对整体分析方法的需求意味着,只能在湿实验室中彻底测试少量的赋形剂。到目前为止,几乎没有开发出用于完善用于湿实验室测试的候选赋形剂的工具。为了填补这一空白,我们开发了赋形剂预测软件(Expreso),这是一种机器学习算法,该算法建议基于蛋白质药物和靶产品概况的特性,建议不活跃成分。创建了超过350种肽/蛋白质药物制剂的数据集,具有可靠的长期稳定性。该数据集具有预测特征,包括蛋白质结构特性,蛋白质语言模型嵌入和药物产品特征。进行了监督的机器学习,以创建一个模型,该模型为数据集中的每种药物提供了赋形剂。expreso可以成功预测九种最普遍的赋形剂的存在,验证得分远高于随机预测,并且过度拟合最少。仅使用基于序列的输入特征的快速变体显示出与依赖分子建模的模型较慢的模型相似的预测功率。有趣的是,仅具有基于蛋白质的输入功能的Expreso变体也显示出良好的性能,证明该算法对数据集中平台配方的影响有弹性。据我们所知,这是机器学习首次被用来建议生物制药赋形剂。总体而言,Expreso在制定过程中与赋形剂筛查相关的时间,成本和风险显示出巨大的潜力。关键字:配方开发,机器学习,赋形剂,不活跃成分,CMC,生物制药,单克隆抗体,可发展性,蛋白质疗法缩写:Expreso,excipient预测软件; ROC,接收器操作特征; AUC,
由于新的方式和更高的预期药物浓度,蛋白质生物药物的制定发展变得越来越具有挑战性。药物供应的约束以及对整体分析方法的需求意味着,只能在湿实验室中彻底测试少量的赋形剂。到目前为止,几乎没有开发出用于完善用于湿实验室测试的候选赋形剂的工具。为了填补这一空白,我们开发了赋形剂预测软件(Expreso),这是一种机器学习算法,该算法建议基于蛋白质药物和靶产品概况的特性,建议不活跃成分。创建了超过350种肽/蛋白质药物制剂的数据集,具有可靠的长期稳定性。该数据集具有预测特征,包括蛋白质结构特性,蛋白质语言模型嵌入和药物产品特征。进行了监督的机器学习,以创建一个模型,该模型为数据集中的每种药物提供了赋形剂。expreso可以成功预测九种最普遍的赋形剂的存在,验证得分远高于随机预测,并且过度拟合最少。仅使用基于序列的输入特征的快速变体显示出与依赖分子建模的模型较慢的模型相似的预测功率。有趣的是,仅具有基于蛋白质的输入功能的Expreso变体也显示出良好的性能,证明该算法对数据集中平台配方的影响有弹性。据我们所知,这是机器学习首次被用来建议生物制药赋形剂。总体而言,Expreso在制定过程中与赋形剂筛查相关的时间,成本和风险显示出巨大的潜力。关键字:配方开发,机器学习,赋形剂,不活跃成分,CMC,生物制药,单克隆抗体,可发展性,蛋白质疗法缩写:Expreso,excipient预测软件; ROC,接收器操作特征; AUC,
© 2024 Infosys Limited,印度班加罗尔。保留所有权利。Infosys 认为本文件中的信息在发布之日是准确的;此类信息如有更改,恕不另行通知。Infosys 承认其他公司对本文件中提及的商标、产品名称和其他知识产权的所有权。除非明确允许,否则未经 Infosys Limited 和/或本文件项下任何指定知识产权持有人的事先许可,不得复制、存储在检索系统中或以任何形式或任何方式(电子、机械、印刷、影印、录制或其他方式)传输本文件或其任何部分。
Archer PreSeq DNA QC 检测利用定量 PCR (qPCR) 来识别质量足以使用 Archer VARIANT Plex 检测生成足够测序文库的 DNA 样本。Archer DNA QC 检测用于评估样本中可扩增 DNA 的数量与已知检测标准的关系。此 SYBR ® Green 检测在两个单独的反应中扩增样本和检测标准中的 100bp 基因组 DNA 序列。比较两个得到的定量循环 (Cq) 值可得出 ΔCq 或 DNA QC 分数。DNA QC 分数具有文库产量的预测值,可用于衡量成功制备 Archer VARIANT Plex 文库所需的输入材料量。
(以下简称“PreSLump AI”)与基于人工智能的混凝土坍落度预测系统 PreSLump AI®(以下简称“产品”)联合开发