气候变化预计会对俄勒冈州的干旱和野火风险产生长期影响,因为夏天继续变得更加温暖和干燥。本文调查了俄勒冈州东北部乌马提拉河流域的干旱特征和干旱繁殖的预计变化,以期为本世纪中叶(2030- 2059年)和本世纪末(2070- 2099年)的气候场景。使用从十个气候模型,土壤和水评估工具中的缩小的CMIP5气候数据集确定了预计气候的干旱特征,以模拟对水文过程的影响。短期(三个月)的干旱特征(频率,持续时间和严重性)使用四个干旱指数,包括标准化降水指数(SPI-3),标准降水 - 疏水 - 蒸发指数(SPEI-3),标准化的流量流量指数(SSI-3)和标准化的土壤水分水分Index(SSSMI-3)。结果表明,短期气象干旱预计变得更加普遍,SPI-3干旱事件的频率高达20%。短期水文干旱预计会变得更加频繁(SSI-3干旱事件的频率平均增加了11%),更严重且持续时间更长(短期干旱平均增加了8%)。同样,短期农业干旱预计会变得更加频繁(SSMI-3干旱事件的频率平均增加了28%),但未来持续时间略短(平均减少4%)。从历史上看,从气象到水文干旱的干旱繁殖时间比大多数亚巴丁斯的气象到农业干旱的繁殖时间短。对于预计的气候场景,干旱繁殖时间的减少可能会强调盆地供水的时机和能力以进行灌溉和其他用途。
在结构化光的领域,光学涡旋及其矢量扩展(矢量涡流束)的研究因其独特的相位和极化特性而引起了很大的兴趣,这使它们对许多潜在应用有吸引力。结合了涡流束和各向异性材料的优势,可以在非线性光学,量子和拓扑光子学中实现电磁场剪裁和操纵的独特可能性。这些应用程序需要一个全面的建模框架,该框架构成了各向异性材料和矢量涡流梁的属性。在本文中,我们描述了一个半分析模型,该模型将矢量衍射理论扩展到通过单轴平板传播的聚焦涡流梁的情况,考虑到标量和矢量涡流的情况下,在laguerre-gaussian模式基础的共同框架中。该模型旨在提供对方法的全面描述,从而实现复杂的光束传输,从单轴各向异性材料中进行特定应用中的单轴各向异性材料的反射和传播。作为其多功能性的演示,我们采用了开发的方法来描述具有各种分散特征的单轴材料中高阶涡流束的传播,探索椭圆形,双曲线和epsilon-near-near-Zero机制。我们展示了培养基各向异性的变化如何因其相互作用的矢量性质而改变束结构,这是由于介质的不同介电性用于横向和纵向场的组件。如果可以通过有效的培养基参数描述,则该方法的适用性可以扩展到人工结构化的介质。开发的形式主义将有助于对复杂梁与单轴材料的相互作用进行建模,从而为多种情况提供了共同的框架,这也可以扩展到电磁波之外。
本文介绍了用于 5G 端射应用的 SICL 馈电宽带 MIMO 天线阵列。阵列中的辐射元件是一种改进的偶极天线,倾斜 ±45 度,以避免阵列配置中连续元件之间的重叠。一个臂放在顶部,而另一个臂放在底部基板上,分别由 SICL 线的顶部和中间板(使用馈电通孔)馈电。偶极天线臂的上下排列使阵列尺寸更加紧凑。SICL 技术的另一个优势是,当一个端口被激励时,可以减少另一个端口的耦合,从而使用 SICL 实现高隔离度。建议采用四元件 MIMO 天线阵列实现 360 度方位覆盖,增益为 6 dBi,阻抗带宽为 5.6 GHz,28 GHz 时交叉极化水平低于 13.6 dB。
本文利用塑性 CTOD 范围 Δ δ p 研究了 2024-T351 铝合金中的疲劳裂纹扩展 (FCG)。对 12 毫米厚的 CT 试样进行实验测试以获得 FCG 速率,并对圆柱形试样进行实验以获得应力 - 应变环。数值分析在材料、几何形状和载荷条件方面复制了实验工作,但假设纯平面应变状态,以获得 Δ δ p 。使用实验应力 - 应变环拟合材料参数。实验工作表明,随着应力比从 R = 0.1 增加到 R = 0.7 毫米,FCG 速率增加,这表明存在裂纹闭合现象。然而,对裂纹尖端后方第一个节点位置的分析表明,在平面应变状态下没有裂纹闭合,而在平面应力状态下发现最大值 36%。因此,即使在 12 毫米厚的样品中,表面也会影响 FCG 速率。发现 da/dN 与 Δ δ p 之间存在近似线性关系。与其他铝合金的比较表明,材料对 da/dN - Δ δ p 关系有显著影响。从平面应变状态到平面应力状态的变化由于裂纹闭合而降低了 FCG 速率。在平面应变状态下,应力比在 R = 0.1 – 0.7 范围内的影响很小,这也是因为没有裂纹闭合。最后,对塑性 CTOD 和裂纹处的累积塑性应变进行了比较
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数量的上限,也代表多用户 MIMO 通信中用户数量的限制。DoF 通常定义为与包围源的最小表面有一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包括对频率带宽的依赖性及其计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里
表 1 给出了公式 (4) 中系数 C 0 的值,针对发射和接收天线中较低的天线的三个高度范围和三种地形(平原、丘陵或山脉)。如果不确定某条链路应归类为平原地区还是丘陵地区,则应采用这两种地区的系数 C 0 的平均值。同样,如果不确定某条链路应归类为丘陵地区还是山区,则应采用这两种地区的系数 C 0 的平均值。一端穿越平原、另一端穿越山脉的链路应归类为丘陵地区。为了确定部分越过水面的路径是位于大部分平原、丘陵地区还是山区,应将水面视为平原。
在两个平行板之间NS脉冲分解期间的抽象电离波发育中,通过PS电场诱导的第二次谐波(EFISH)生成和动力学建模研究了介电覆盖的电极。结果表明在放电间隙中形成了两个定义明确的电离波,这需要相对较高的初始电子密度。第一个,阳极定向的波是通过施加的电压脉冲“扫地”初始电子产生的。第二波源于阴极和第一波前部之间,由于该区域的场增强,产生了两个波前方,朝相反的方向传播并在等离子体发射图像中观察到。仅通过efish测量值检测到第二波的阳极定向前部,这很可能是由于阴极定向前部靠近壁。测量和建模预测都表现出由第二波的阳极定向前面引起的间隙中心的瞬态电场。在第一个波和第二波后面形成的等离子体域之间的边界,在等离子体发射图像中观察到,通过EFISH测量值检测到,并通过建模计算进行了预测。模型在放电脉冲结束时预测的电子密度和耦合的能量分布几乎是统一的,除了在阴极 - 粘合壁附近,在该壁附近,该模型的适用性尚不确定,并且无法访问Efish测量值。
最近的许多研究都集中在生物学上可行的监督学习算法变体上。然而,运动皮层中没有老师来指导运动神经元,大脑中的学习取决于奖励和惩罚。我们展示了一种生物学上可行的强化学习方案,适用于具有任意层数的深度网络。网络通过选择输出层中的单元来选择动作,并使用反馈连接将信用分配给负责此动作的连续较低层中的单元。做出选择后,网络会得到强化,没有老师来纠正错误。我们展示了新的学习方案——注意力门控大脑传播 (BrainProp)——在数学上等同于错误反向传播,每次针对一个输出单元。我们展示了深度全连接、卷积和局部连接网络在经典和硬图像分类基准(MNIST、CIFAR10、CIFAR100 和 Tiny ImageNet)上的成功学习。 BrainProp 的准确度与标准误差反向传播相当,甚至优于最先进的生物启发式学习方案。此外,学习的反复试验性质与有限的额外训练时间有关,因此 BrainProp 的速度要慢 1-3.5 倍。因此,我们的研究结果为如何在大脑中实施深度学习提供了新的见解。
水平基因转移是细菌进化的最重要驱动因素之一。传统上,通过吸收细胞外 DNA 进行转化不被认为是一种有效的基因获取方式,原因很简单,因为当细胞外 DNA 悬浮在海水等环境中时,几天内就会降解。最近,储存 DNA 的年龄跨度增加到至少 2 Ma。在这里,我们表明 Acinetobacter baylyi 可以整合吸附在常见沉积矿物上的 60 bp DNA 片段,并且转化频率与矿物表面特性成比例。我们的工作强调,古老的环境 DNA 可以促进当代细菌的进化。与可遗传的随机突变相反,细菌在压力和需求增加时获取新基因组材料的过程表明,非随机机制可能以非随机方式推动进化。
辐射场的自由度 (DoF) 与 MIMO 天线设计相关,因为 DoF 代表 MIMO 信道有效自由度数的上限,也代表多用户 MIMO 通信中用户数的限制。DoF 通常定义为距包围源的最小表面一定距离,因此无功场可以忽略不计。本文建议扩展 DoF 概念,使其包含对频率带宽的依赖性,并提出计算过程。这是通过引入存储在辐射表面附近的无功能量与辐射功率之间的比率作为源频率带宽的度量来实现的。问题就在这里