本课程基于普通计算机架构概念,但扩展了量子比特(称为量子位)和量子门的使用,介绍了量子计算的实际应用。本课程将介绍量子计算机架构中的不同层,并基于名为 Qiskit 的公共领域平台为学生提供工具,以编写一些量子电路并在一小组量子比特上执行它们。量子计算概念与经典计算机架构正交,在经典计算机架构中,数据被传输到处理器,而经典门的结果被写回到内存中。在量子计算中,逻辑直接应用于量子比特,这是一种存储和表示正在处理的数据的方式。量子算法的执行将在 QBee 平台上进行,并假设量子比特是完美的,而不是物理的。
摘要。普通微分方程的多项式和非分解系统的二二次化在多种学科中,例如系统理论,流体力学,化学反应建模和数学分析。二次化揭示了模型的新变量和结构,该变量和结构可能更容易分析,模拟,控制并提供了方便的学习参数化。本文提出了新的理论,算法和软件功能,用于非自治odes的二次化。我们根据输入函数的规律性提供存在结果,因为可以通过二次化获得二次双线系统的情况。我们进一步发展存在结果和一种算法,该算法概括了具有任意维度的系统的二次化过程,该系统在尺寸增长时保留了非线性结构。对于此类系统,我们提供维度不合时宜的二次化。一个示例是半消化的PDE,当离散化大小增加时,非线性项在象征性上相同。作为这项研究实际采用的重要方面,我们将QBEE软件的功能扩展到具有任意维度的ODES和ODES的非自治系统。我们提供了以前在文献中报道的ODE的几个示例,在此,我们的新算法找到了比先前报道的提升转换的四倍体ode系统。我们进一步强调了二次化的重要领域:减少阶模型学习。太阳风示例突出了这些优势。该区域可以通过在最佳提升变量中工作而受益匪浅,其中二次模型提供了模型的直接参数化,这也避免了非线性项的额外超重还原。