重夸克是电磁场和高能核碰撞中产生的夸克胶子等离子体 (QGP) 物质初始条件的重要探针。在与 (3+1) 维粘性流体动力学模型耦合的改进的朗之万模型中,我们探索了重介子及其衰变轻子的定向流系数 (v 1 ) 的起源,以及它在相反电荷之间的分裂 (∆v 1)。我们发现,虽然重夸克 v 1 的快速度依赖性主要由 RHIC 能量下 QGP 相对于纵向的倾斜能量密度分布驱动,但它主要受 LHC 能量下的电磁场影响。∆v 1 可作为电磁场时空演化分布的一种新探针。我们对 D 介子及其衰变电子的研究结果与 RHIC 和 LHC 上现有的数据一致,而且我们对重味衰变μ子的预测可以通过未来的测量进一步检验。
背景:家族性噬血细胞性淋巴组织细胞增生症 (FHLH) 是一种遗传性、危及生命的疾病。该病已确定有五种类型,此外还有以 HLH 为典型表现的先天性免疫缺陷综合征。中东地区关于此病的文献非常稀少,只有少数零散报道。方法:我们报告了过去 10 年卡塔尔 28 名被诊断患有原发性和家族性 HLH 的患者的详细人口统计学、临床和基因组数据。对卡塔尔基因组计划 (QGP) 队列中的 14,669 名卡塔尔个体中的 12 种原发性和家族性 HLH 致病基因的有害变异的等位基因频率进行了评估。结果:15 名患者获得了基因诊断,发现穿孔素 1 ( PRF1 )、UNC13D 、LYST 和 RAB27A 基因中有四种新的突变。我们在这 12 个基因中发现了 22,945 个在卡塔尔 GP 中显著富集的低/高/中等/修饰影响变异。我们患者队列中发现的 PRF1 中的 rs1271079313 变异和 RAB27A 中的 rs753966933 变异在卡塔尔 GP 中显著更为普遍,与基因组聚合数据库 (gnomAD) 数据库相比,卡塔尔人群的携带者频率较高。结论:我们在海湾地区建立了第一个原发性和家族性 HLH 登记处,并发现了在卡塔尔人群中频率较高的新型可能致病变异,可用于筛查目的。提高对原发性和家族性 HLH 的认识并在卡塔尔高度近亲繁殖人群中实施筛查活动,可以带来更全面的婚前和产前评估以及更快的诊断。
NA49 [PRC 77 (2008) 024903]: 在 √s NN =7.7GeV 时开始解禁 STAR BES-1: 核修正因子 R CP • 从抑制(高 √s NN )平稳过渡到增强(低 √s NN ) • 低于 √s NN = 39 GeV 没有抑制?关闭?或者,与 Cronin 效应、流动等增强竞争。 Ø R CP > 1 并不意味着“没有 QGP”
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
重夸克是研究超相对论重离子碰撞中产生的夸克胶子等离子体 (QGP) 特性的有效探针。本文将讨论 ALICE 合作组测量的 pp 和 Pb-Pb 碰撞中开放重味产生的最新结果。测量 Pb-Pb 碰撞中开放重味产生可以测试重夸克在介质中的传输和能量损失机制。此外,测量重味粒子的椭圆 (𝑣 2 ) 和三角形 (𝑣 3 ) 流动系数可以深入了解重夸克参与介质的集体运动、它们在介质中能量损失的路径长度依赖性以及强子化过程中的复合效应。最后,开放重味粒子的定向流 (𝑣 1) 对碰撞早期存在的空前强磁场非常敏感,因此测量其电荷依赖性是限制 QGP 电导率的关键。在像 pp 这样的小型强子系统中,开放重味粒子的产生为研究重离子碰撞中的热介质效应以及测试微扰量子色动力学计算提供了基础。
重离子碰撞物理学的主要目标之一是探索奇异物质态的性质,即热、致密且难相互作用的重子物质。它可以在实验室中通过相对论能量下的重核碰撞来重现。格点量子色动力学 (QCD) 计算表明,在高能和低重子密度下,夸克胶子等离子体 (QGP) 到强子气体的转变是平稳的 [1]。人们普遍认为,最终以三临界点结束的一级相变发生在 √ s = 3 至 10 GeV 之间的能量范围内,例如,参见 [2] 及其参考文献。各种过去和正在进行的实验,如相对论重离子对撞机 (RHIC) 上的束流能量扫描 (BES) 和 BES II [ 3 , 4 ]、欧洲核子研究中心的超级质子同步加速器 (SPS) 上的实验,都在探索与金和铅离子束的碰撞,以发现上述能量范围内的任何特殊性。然而,到目前为止,还没有观察到一级相变和三临界点。未来的实验,如基于核子加速器的离子对撞机设施 (NICA) 和反质子和离子研究设施 (FAIR) 旨在以更高的亮度在给定能量下进行碰撞,这让我们有希望在那里看到一些新的东西。观察相变的困难源于许多因素。其中一些是QGP相存在时间极短(大约10 − 24 fm/ c),系统中粒子数少,物质在坐标和动量空间中都具有高度各向异性等。探测器记录的所有有价值的信息大约是数千个具有相应能量和动量的粒子。因此,很难对它们来自的介质做出任何合理的假设。
该项目提议使用 3FD 流体动力学模型和 UrQMD 和 QGSM 传输模型研究 NICA 对撞机能量下的相对论重离子碰撞 (rHIC) 中的涡量、定向流和强子冻结等现代高能物理中的实际现象。应研究以下现象:反应平面和方位平面中的涡量、涡量中的奇点、超子的极化、涡量和定向流 v 1 的相互关系、v 1 的减小及其在中快速度时的符号变化以及强子的冻结,在 rHIC 期间夸克胶子等离子体 (QGP) 形成的情况下。应将结果与纯强子物质的计算进行比较。这项研究将确定对实验中从解耦阶段到强子阶段的相变信号最敏感的可观测量和分布。
我们研究了在√snn = 7处的au+au碰撞中识别颗粒的定向流。7至62.4 GEV。 扩展了Glauber模型,包括相对于纵向方向的QGP Filball的倾斜变形,以及在初始状态下的非零纵向流速度梯度。 通过将这种改进的初始条件与(3+1)维粘性的水动力模型计算相结合,我们可以获得对横向动量光谱的令人满意的描述,以及依赖于速度的定向流量的速度依赖于不同的生产体。 我们的计算表明强子定向流的灵敏度,尤其是其在质子和抗脂子之间的分裂,对初始几何和初始纵向流速均具有敏感性。 因此,不同黑龙的定向流的结合可以对重型离子碰撞中产生的核物质的初始条件产生严格的限制。 在相同的理论框架内,从定向流中提取的初始条件通过λ和λ的全局极化进行了测试,在此,我们获得了在RHIC处不同碰撞能观察到的这些超子极化的合理描述。7至62.4 GEV。扩展了Glauber模型,包括相对于纵向方向的QGP Filball的倾斜变形,以及在初始状态下的非零纵向流速度梯度。通过将这种改进的初始条件与(3+1)维粘性的水动力模型计算相结合,我们可以获得对横向动量光谱的令人满意的描述,以及依赖于速度的定向流量的速度依赖于不同的生产体。我们的计算表明强子定向流的灵敏度,尤其是其在质子和抗脂子之间的分裂,对初始几何和初始纵向流速均具有敏感性。因此,不同黑龙的定向流的结合可以对重型离子碰撞中产生的核物质的初始条件产生严格的限制。在相同的理论框架内,从定向流中提取的初始条件通过λ和λ的全局极化进行了测试,在此,我们获得了在RHIC处不同碰撞能观察到的这些超子极化的合理描述。
重味夸克与粲夸克和美夸克一样,是研究高能重离子碰撞中产生的无色介质——夸克胶子等离子体 (QGP) 的灵敏探测器。ALICE 合作组在 √ s NN = 5.02 TeV 的 Pb-Pb 碰撞中测量了奇异和非奇异 D 介子的产生。对 D 介子的椭圆 (v2) 和三角 (v3) 流的测量可以深入了解粲夸克在低横向动量 (pT) 下参与介质集体运动的情况,同时限制了介质内能量损失的路径长度依赖性。此外,利用事件形状工程 (ESE) 技术对非奇异 D 介子椭圆流研究了粲夸克与底层介质中轻夸克的耦合。最后,通过首次测量 LHC 能量下 D0 电荷相关定向流与伪快速度的关系,研究了碰撞早期产生的磁场的影响。
我们系统地研究了流体动力学模拟中超子全局极化对碰撞系统初始纵向流速的敏感性。通过在将初始碰撞几何映射到宏观流体动力学场时明确施加局部能量动量守恒,我们研究了系统的轨道角动量 (OAM) 和流体涡度的演变。我们发现同时描述 Λ 超子的全局极化和介子定向流的斜率可以强烈限制流体动力学演化开始时纵向流的大小。我们利用 RHIC 光束能量扫描程序中的 STAR 测量结果提取了初始纵向流的大小和产生的 QGP 流体中轨道角动量分数作为碰撞能量的函数。我们发现在流体动力学演化开始时,中快速度流体中剩余约 100-200 ℏ OAM。我们进一步考察了不同的流体动力学梯度对Λ和¯ Λ自旋极化的影响。µ B /T的梯度可以改变Λ和¯ Λ极化之间的有序性。