近年来,量子信息处理 (QIP) 的许多领域都取得了巨大进步,包括量子隐形传态 [1, 2]、量子秘密共享 [3]、量子密钥分发 [4, 5]、量子安全直接通信 [6, 7]、量子密集编码 [8]、量子算法 [9–12] 和量子门 [13–15]。由于量子通信利用量子相干叠加和量子纠缠效应,其传播速率和可靠性高于传统通信方法 [16]。此外,量子计算在高效搜索无序数据库中的目标项和分解大整数方面表现出比传统方法更高的性能 [16]。最近,已经提出了许多复杂的方法来通过采用多个自由度 (DOF) 来改进传统方法。多自由度具有广泛的应用前景,包括实现超并行量子计算 [17]、量子通信 [18]、简化量子计算 [19]、高维量子增强子 [20],以及完成单自由度系统无法解决的特定确定性任务,如确定性线性光学量子算法 [21]、确定性线性光学量子门 [22]、线性光学隐形传态 [2] 和无需共享参考框架的量子密钥分发 [23]。此外,超并行量子增强子由于其优异的优势而备受关注,使其成为长距离量子保密通信和量子计算机的潜在候选者。超并行 QIP 的操作可在两个或多个不同的自由度上同时执行,具有抗光子耗散噪声的潜力,可以提高量子信道容量,提高量子通信的安全性,降低实验要求和资源开销,提高协议的成功率,提高量子计算的速度。最近,已报道了各种超纠缠态,例如,偏振空间能量超纠缠态 [24]、偏振时间箱超纠缠态 [25]、自旋运动超纠缠态 [26]、偏振动量超纠缠态 [27]、偏振时间频率超纠缠态 [28] 和多路径超纠缠态 [29]。这些资源可以帮助我们用一个自由度实现许多重要的量子任务,例如利用线性光学完成纠缠态分析[30, 31]、纠缠纯化和浓缩[32]、单自由度团簇态制备和单向量子计算[33]、量子纠错[34]、隐形传态[27]、线性光子超稠密编码[35]、增强型违反局部现实论[36]和量子算法[29]。此外,超纠缠还在超并行光子量子计算[37, 38]、超纠缠交换[39]、超隐形传态[40]、超纠缠态分析[41–43]、超并行中继器[44]、超纠缠纯化[45, 46]和超纠缠浓缩[47, 48]。光子已经成为超并行QIP的优秀候选者,因为它们拥有大量可用的量子比特,例如自由度,包括偏振[49]、空间模式[24]、横向轨道角动量[50, 51]、时间箱[52]、频率(或颜色)[53]和连续可变的能量时间模式[54]。此外,由于自由空间中的退相干可以忽略不计,光子不仅可以轻松地在长距离上携带量子信息,而且还可以通过线性光学元件以极快和精确的方式对其进行操纵,并以高效的方式产生[55]。使用标准线性光学元件灵活控制光子是一种有趣的
1 CVO(兼职) 2022 年 4 月 11 日至今 NITK Surathkal 2 院长,(学生福利) 2018 年 10 月 15 日至 2021 年 10 月 14 日 NITK Surathkal 3 系主任。 MME 2014 年 4 月 21 日至 2016 年 4 月 19 日 NITK Surathkal 4 副院长(学术、PG&R)2010 年 9 月 1 日至 2014 年 12 月 26 日 NITK Surathkal 5 II 号楼管理员 2007 年 9 月 12 日至 2010 年 12 月 31 日 NITK 宿舍 6 学术委员会召集人 2010 年 9 月 1 日至 2014 年 12 月 26 日 NITK Surathkal 7 QIP 协调员 2010 年 9 月 1 日至 2014 年 12 月 26 日 NITK Surathkal
•澳大利亚早期发展人口普查(AEDC)•市政早期计划•当前和过去的儿童观察•与学校讨论•与其他EY专业人员讨论•质量改进计划(QIP)•质量改进计划•服务改进计划(SIP)•评估和评估•教育者专业学习计划•VEYLDF实践计划•LGA幼儿园的参与•其他注明信息•其他注明信息。如果您的数据源未列出上述,请使用其他。
2.0 监测方法提交 .........................2-1 2.1 监测方法提交目标 ............2-2 2.2 监测方法提交的要素 ..........2-3 2.2.1 背景 ...............。。。。。。。。。。。。。。。。。。。。。。。。.....2-8 2.2.2 监测方法 .....................................2-8 2.2.3 选定监测方法和指标范围的理由 ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。............2-14 2.3 监测方法选择和指标范围选择 ..........。。。。。。。。。。。。。。。。。。。。。。。。.........2-18 2.3.1 监测方法的选择 ............................2-18 2.3.2 指标范围选择 ..........。。。。。。。。。。。。。。。。。。。。。。。。2-27 2.4 质量改进计划 (QIP) .....................。。2-39
光子平台是量子技术的绝佳环境,因为弱光子环境耦合可确保长时间的连贯时间。Quantu-Photonics的第二个关键成分是光子之间的相互作用,可以通过光学非线性以跨相调节(XPM)形式提供。这种方法为量子光学1 - 12中的许多提议的应用和信息处理13,14提供了基础,但是实现其潜力需要强大的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明,具有嵌入式量子孔的微柱中的激子 - 孔子可以提供所需的非线性。这些结合了激子15、16的强相互作用与微米大小的发射器的可伸缩性。17 - 19。,我们使用衰减至单个光子平均强度的激光梁观察到每个粒子的XPM高达3±1 mrad。我们的工作是第一个垫脚石,我们放下了一条途径,以在极化晶格中进行量子信息处理。XPM的量子应用包括传送1,光子数检测2,计量学6、7,密码8和量子信息处理(QIP)(QIP),在其中提议将其作为通往电路9的途径-10
2.0 监测方法提交....................................................................................................................................................................................2-1 2.1 监测方法提交目标..................................................................................................................................................2-2 2.2 监测方法提交的要素..................................................................................................................................................2-3 2.2.1 背景..................................................................................................................................................................................................................2-3 2.2.1 背景..................................................................................................................................................................................................................................2-4 2.2.1 概述..................................................................................................................................................................................................................2-5 2.2.2 概述..................................................................................................................................................................................................2-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 2.3 监测方法和指标范围的选择.......................................................................................................................2-18 2.3.1 监测方法的选择....................................................................................................................................2-18 2.3.2 指标范围的选择....................................................................................................................................2-18 2.3.2 指标范围的选择.................................................................................................................................... . ...
PC 成员 ⋄ 第九届量子计算、通信和密码理论会议(TQC 2014)。 ⋄ 第二十届量子信息处理年会(QIP 2017)。 ⋄ 第二十一届量子信息处理年会(QIP 2018)。 ⋄ 与 ICSE 2020 和 ICSE 2021 共同举办的量子软件工程国际研讨会 (Q-SE 2020、Q-SE 2021)。 ⋄ 第十五届量子计算、通信和密码理论会议 (TQC 2020)。 ⋄ 2021 年 IEEE 国际量子计算与工程会议 (QCE 2021)。 ⋄ 第 43 届 ACM SIGPLAN 编程语言设计与实现会议 (PLDI 2022)。 ⋄(领域主席)第 10 届学习表征国际会议(ICLR 2022)。⋄ 量子计算理论实践研讨会 QCTIP 2022。⋄(领域主席)第 36 届神经信息处理系统会议(NeurIPS 2022)。⋄(领域主席)第 40 届机器学习国际会议(ICML 2023)。⋄(领域主席)第 37 届神经信息处理系统会议(NeurIPS 2023)。⋄ 第 51 届 ACM SIGPLAN 编程语言原理研讨会(POPL 2024)。⋄ 第 45 届 ACM SIGPLAN 编程语言设计与实现会议(PLDI 2024)。⋄(领域主席)第 41 届机器学习国际会议(ICML 2024)。 ⋄(领域主席)第 38 届神经信息处理系统会议(NeurIPS 2024)。⋄(高级 PC)第 39 届 AAAI 人工智能会议(AAAI 2025)。⋄ 第 46 届 ACM SIGPLAN 编程语言设计与实现会议(PLDI 2025)。⋄(领域主席)第 42 届机器学习国际会议(ICML 2025)。
- CCC 2023(计算复杂性会议) - CIMP 2024,2025(数学物理学的通信) - ICALP 2025(国际自动机,语言和语言和编程座谈会) - 信息理论的IEEE TRACTITS 2023 -2023 - ITCS 2025 - ITCS 2025(ITCS 2025)(理论计算机科学的创新)(jacm 202222222)(JACM 2025(MODC)(MODC)(MODC(MONF)(MONGINACTINCTINCTINCE)计算机科学基础) - QCTIP 2025(实践中的量子计算理论) - QIP 2023,2024,2025(量子信息处理) - Sicomp 2025(Siam on Computing on Computing) - TQC 2023(量子计算理论,通信和密码理论)
量子纠缠是实现光量子信息处理 (QIP) 不可或缺的资源 [1-7]。传统上,通过利用符合波粒二象性的光的两个不相容方面之一来实现纠缠,两类方法同时发展起来。因此,这些发展导致了信息编码的两个不同方向,即使用有限维的离散变量 (DV) 状态(如光子数、时间箱和光偏振)[1-4] 或无限维希尔伯特空间的连续变量 (CV) 状态(如场正交分量)[5-7]。在实践中,这两种编码都展示了各自的优势,但也暴露了各自的弱点。由于不太担心光子丢失,涉及单光子的 DV 协议通常享有几乎单位保真度,但依赖于概率实现和高效的单光子探测器。相比之下,CV 替代方案使用电磁场的正交分量,具有明确的状态鉴别、无条件操作和完美的同差检测效率,但由于与真空耦合,存在光子损失和固有的低状态保真度。最近,人们做出了显著的努力 [8-22],利用这两种方法的优点来克服固有的个体局限性。在统一的混合架构中集成 DV 和 CV 技术方面取得的进展表明,我们能够分配和互连光学 DV 和 CV 量子态(或量子比特)。我们可以设想一个异构量子网络,要求在两种编码之间进行匹配的信息传输。因此,这些混合技术为实现可扩展的 QIP 和量子通信提供了新的思路。虽然将 DV 工具箱与 CV 框架相结合的努力早在二十年前就已开始用于生成非高斯状态,但它
2010 年,Martin van Dijk、Craig Gentry、Shai Halevi 和 Vinod Vaikuntanathan 12 (DGHV) 确定,向 pq i 公钥添加噪声会阻止 GCD(最大公约数)密钥发现以及目前的任何其他密钥发现方法。要添加的噪声量由近似 GCD 假设确定:如果从集合 {xi = qip + 2r i : ri << p : p << qi } 中抽取许多整数,其中 (1) ri 是少量噪声并且对于每次加密都不同,并且 (2) 每个 xi 都非常接近 p 的倍数但不是 p 的精确倍数,则整数集 xi 与相同大小的随机整数无法区分。