试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
QLM 人寿和医疗保险公司 QPSC (QLM) 是卡塔尔领先的人寿和医疗保险公司,该公司宣布已获得其股票在卡塔尔交易所上市交易所需的监管批准。QLM 股票于 2021 年 1 月 13 日星期三开始交易,股票代码为 (QLMI)。QLM 的已发行股本为 350,000,000 卡塔尔里亚尔,包括 350,000,000 股,每股面值为 1.00 卡塔尔里亚尔。
慕尼黑和巴黎,2021年3月18日 - Atos今天宣布,它已将其ATOS量子学习机器(ATOS QLM)(全球表现最高的商业量子模拟器)交付给了莱布尼兹超级计算中心(LRZ),巴伐利亚大学科学和人文科学院和人文学院。ATOS QLM安装在最近打开的LRZ量子集成中心(QIC),这是巴伐利亚杰出的计算设施。该中心旨在通过推进量子计算和超级计算的融合来为科学界带来实用的量子应用。LRZ是全球第一个关注HPC环境中量子计算与量子整合中心集成的计算中心之一。混合量子HPC方法在有效地使用当今的古典计算机来利用近期量子应用的力量中显示出巨大的承诺。利用ATOS QLM及其与ATOS,Finnish-German初创企业IQM和其他合作伙伴等主要参与者的合作,LRZ将能够为更多用户提供量子技术。通过利用现有的HPC基础架构,该计划将使他们能够在几年内通过量子计算来探索并捕捉机会。
巴黎,2020年9月3日 - 数字化转型的全球领导者Atos现在提供免费,通用的MyQLM访问权限,其计划为研究人员,学生和开发人员提供量子编程工具。于2019年推出,最初保留给ATOS量子学习机器(ATOS QLM)用户,旨在使量子模拟的访问权限并鼓励量子计算中的创新。通过允许全世界的所有研究人员,学生和开发人员下载和使用MyQLM,Atos在承诺增强量子计算社区的承诺方面向前迈进了一步。量子计算有可能通过刺激医疗保健,环境可持续性,工业过程或金融方面的突破来改变世界。当前开发商业上可行的量子计算机的种族有助于提高全球对现场的认识,但量子革命不仅需要硬件。需要促进对学生,教授,工程师和研究人员的培训,以为新的编程语言,算法和工具的出现铺平道路,这是利用量子计算的真正力量的所有必需品。使用MyQLM,任何人都可以探索量子计算的功能,从实验量子编程到直接在自己的计算机上直接启动20 QUBIT的模拟,甚至在ATOS QLM上启动更大的模拟。
法国巴黎地区 Atos Quantum Lab 招聘研究工程师 Atos Quantum Lab ( https://atos.net/en/insights-and-innovation/quantum- computing ) 正在开放两个量子计算研究工程师的永久职位。 简介: 量子物理学(理论或实验)或量子信息科学博士学位。 至少 2 年量子计算研究经验,博士后或行业职位均可。 精通 Python 3 科学编程,最好是 C++。 了解软件工程者优先。 曾有资助项目(国家或国际)经验。 了解高性能编程技术者优先(OpenMP、MPI、OpenCL、Cuda)。 要求英语流利。 使命:参与设计和开发 QLM 的高级功能,QLM 是世界上最先进、使用最广泛的量子计算平台之一。这主要包括科学软件代码:量子过程的数值模拟、量子编译算法……对学术合作项目的科学贡献:www.neasqc.eu、www.aqtion.eu、www.pasquans.eu……指导博士生和本科生。发表研究论文,偶尔在大学授课(研究生水平)。地点:les Clayes sous Bois – 凡尔赛郊区申请:量子计算研究工程师 (H/F) https://jobs.atos.net/job/Les-Clayes-78-Quantum-Computing-Software-Engineer- %28HF%29-Ile/645634801/
F0B78 = 6C> = K:\ HGLMBMNMBHGZE ZF^g] n [m bg ma^ahnl^%pab \ a az] izll^] ma^f^zlnk^hk hk hg^ebd^bm _bo^mbf^mbf^l bg k^gm^gm^gm r^zkl'ma^zkl'a^zf^zf^gmílLniiHkm^kl^qll^qll^qlm gho^f [^kíl^e^\ mbhg \ hne] ikh] n \^ma^mph&mabk] g^l] zr _hng],。 l^gZmhkl hg k^\hk] hiihlbg` ma^ Zf^g]f^gm É hg^ fhk^ maZg bl g^^]^] mh ]^_^Zm bm% [Zkkbg` Z \aZg`^ bg ihlbmbhg' EZm^ P^]g^l]Zr L^kZh Ah%Za KhZa Kh]
摘要 让机器具备识别和理解隐喻的能力是实现人工智能的关键一步。在语言理论中,隐喻可以通过隐喻识别程序(MIP)或选择偏好违背(SPV)来识别,这两者通常被视为自然语言处理领域的匹配任务。然而,由于词语的语义不确定性和字面意义的模糊性,MIP 的实现面临挑战。同时,SPV 往往难以识别传统的隐喻。受到用于建模语义不确定性和细粒度特征匹配的量子语言模型(QLM)的启发,我们提出了一种用于隐喻检测的量子启发匹配网络。具体而言,我们使用密度矩阵来显式地表征 MIP 的目标词的字面意义,以建模词语字面意义的不确定性和模糊性。这使得 SPV 即使面对传统的隐喻也能有效工作。然后通过细粒度特征匹配实现 MIP 和 SPV。实验结果最终证明了我们的方法具有强大的竞争力。
摘要 本文提出了一种新的量子密钥分发(QKD)协议,即基于伪随机基纠缠光子的 QKD(PRB-EPQKD)协议。最新协议主要关注三个属性,包括协议的安全性、安全密钥大小和合法通信用户(Alice 和 Bob)之间的最大通信距离。为了实现这一点,我们首先考虑一个位于低地球轨道(LEO)型卫星上的自发参数向下(SPDC)光子源,该光子源能够产生并向 Alice 和 Bob 分发纠缠光子对。其次,我们假设 Alice 和 Bob 的光子状态测量基是通过伪随机数生成器(PRNG)相同生成的,即量子逻辑映射(QLM)。最后,我们还假设除了光子状态之外,Alice 和 Bob 还故意在每个脉冲上共享一组强度随机的诱饵状态,目的是检测窃听者(Eve)的存在。基于这些考虑,我们利用 Gottesman-Lo- Lutkenhaus-Preskill (GLLP) 公式评估了两种不同实现(即基于非诱饵状态和无限主动诱饵状态的 QKD)的安全密钥速率上限。与现有协议相比,安全密钥大小和通信距离都有显著改善,因为我们意识到在日光、下行卫星条件、精心选择的光源和良好的晶体特性下,最大通信距离可达 70000 公里。此外,使用组合的 I 型和 II 型 SPDC 光子源作为我们的纠缠光子对发生器,显著提高了光子平均数,使我们的协议对光子数分割攻击和衰减引起的大气传播更具鲁棒性。此外,该协议与现有协议相比更加安全,因为任何窃听者必须同时破解用作 PRNG 的混沌系统和 QKD 系统,才能获得有关 Alice 和 Bob 使用的测量基的任何有用信息,从而获得安全密钥。