用于解决量子线性系统 (QLS) 问题的量子算法是近年来研究最多的量子算法之一,其潜在应用包括解决计算上难以解决的微分方程和提高机器学习的速度。决定 QLS 求解器效率的一个基本参数是 κ,即系数矩阵 A 的条件数,因为自从 QLS 问题诞生以来,我们就知道,在最坏情况下,运行时间至少与 κ 呈线性关系 [1]。然而,对于正定矩阵的情况,经典算法可以求解线性系统,运行时间扩展为 √κ,与不确定的情况相比,这是一个二次改进。因此,很自然地会问 QLS 求解器是否可以获得类似的改进。在本文中,我们给出了否定的答案,表明当 A 为正定时,求解 QLS 也需要与 κ 呈线性关系的运行时间。然后,我们确定了可以规避此下限的正定 QLS 的广泛类别,并提出了两种新的量子算法,其特点是 κ 的二次加速:第一种基于有效实现 A − 1 的矩阵块编码,第二种构建形式为 A = LL † 的分解来预处理系统。这些方法适用范围广泛,并且都允许有效地解决 BQP 完全问题。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4] 。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量不成比例,这可能会阻碍实现将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性 [5] 。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法 [6 – 8] 。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
目前,人们致力于实现分子的精密光谱和量子态控制。与原子相比,分子的种类要多得多,它们具有更丰富的结构,可以提供完全不同的功能,并更适合某些任务,例如,对各种基础物理测试的灵敏度更高[1-4]。高内部状态相干性和跨频率量子信息转换的潜力也使分子在量子信息处理方面具有吸引力[5-9]。尽管近年来取得了令人瞩目的进展,但分子的量子态制备、检测和控制仍然比原子更困难[10-14]。量子逻辑光谱(QLS)[15]在研究带电粒子,特别是分子离子方面显示出巨大的前景和多功能性。它依靠原子“逻辑”离子种类对联合平移运动进行协同冷却和状态读出,并能够实现难以控制的带电粒子(“光谱”离子)的量子态制备、操纵和光谱分析[16-18]。在我们的实验中,所有针对分子离子的激光器都会驱动远失谐的受激双光子拉曼跃迁,而这些跃迁不依赖于分子的特定能级结构。这一点,加上对平移自由度的协同冷却和量子逻辑读出也可以在对分子结构细节要求不高的情况下进行,使得 QLS 可用于多种离子种类。为了探索分子的新应用,以高分辨率测量跃迁频率和其他特性,并解释在这种前所未有的精度水平下变得相关的微小系统效应也至关重要。特别是,自旋和原子核的相对运动增加了
囚禁原子离子系统已证明,其状态准备和测量 (SPAM) 不准确性 [1] 以及单量子比特和双量子比特门错误率 [2–4] 是所有量子比特中最低的。基于囚禁离子的完全可编程、少量子比特量子计算机已经建成 [5, 6]。然而,到目前为止,这些系统尚未扩展到大量量子比特,原因包括异常加热 [7–10]、声子模式拥挤 [11]、光子散射 [12, 13],以及传统光学元件的扩展挑战 [14, 15]。最近,有研究表明,通过直接电磁偶极-偶极相互作用耦合的分子离子量子比特可用于量子信息处理 [16]。虽然使用该方法的分子量子比特系统的可扩展性预计不会受到异常加热或声子模式拥挤的限制,但目前分子离子量子比特并不像原子离子量子比特那样容易控制。特别是,分子离子的 SPAM 由于其通常缺乏光学循环跃迁而变得困难,这使得激光照射分子成为问题 [17]。一种方法是通过共捕获的原子离子进行量子逻辑光谱 (QLS) [18–20],这种方法最近也被用于纠缠原子和分子离子 [21]。然而,由于 QLS 需要在运动基态附近冷却,因此技术要求很高,而且激光操控分子离子会导致自发辐射到暗态。这里,我们描述了如何利用离子阱中的偶极-声子耦合将极性分子离子的偶极矩与多离子库仑晶体的声子模式纠缠在一起。这种现象可以用两种方式直观地理解:作为非静止离子所经历的时间相关电场驱动分子电偶极跃迁,或作为时间相关偶极矩驱动离子运动。对于多个离子,振荡发生在库仑晶体的集体模式中,甚至可以使相距很远的偶极子通过共享声子模式发生强烈相互作用。此外,偶极-声子相互作用可以是
评估将如何进行/交付 评估将使用我们的学习管理系统 Canvas 在线进行/交付。评估细节将在评估日期之前由 QLS 专业认证团队通过 Canvas 确认。所有注册参加此课程的考生都将获得 Canvas 的学生访问帐户。考生可以在 Canvas 上访问家庭作业。考生可以在咨询委员会设定的截止日期之前将作业上传到 Canvas,也可以发送电子邮件至专业认证团队 spec@qls.com.au。 模拟客户面试将通过 Microsoft Teams 以虚拟方式进行。专业认证团队将在评估前向所有考生提供链接详细信息。 笔试将通过 Canvas 在线进行。专业认证团队将在评估前提供有关考试的进一步说明。 在线评估的重要说明:参加任何在线评估的考生: