使用 QSS 工具箱在 MATLAB 中进行 EV 建模 为了在 matlab 中建模,我们需要指定我们要设计的车辆的一些参数。
在1980年代,QSS被用作早期诊断性脊柱炎的必需指数(AS)。25–29 SI比例为1.55,表明,随着持续时间少于三年或大于三年的步骤,如果1.40。 30一项对2年随访的患者的研究结束了,QSS的AS提出了可能在可能的情况下对早期疾病鉴定的前景。 31考虑到时间和成本,QSS在识别s骨炎和鉴定s骨炎方面都比MRI优越。 32高度敏感的C反应蛋白(HS-CRP)的因子是Varynig疾病(例如SPA)的生物标志物。 一项研究宣布,基于HS-CRP和QSS有显着差异的事实,SPA中的高HS-CRP作用于SI炎症指数,暗示着风湿病的结果,尤其是在中部三分之一。 3325–29 SI比例为1.55,表明,随着持续时间少于三年或大于三年的步骤,如果1.40。30一项对2年随访的患者的研究结束了,QSS的AS提出了可能在可能的情况下对早期疾病鉴定的前景。31考虑到时间和成本,QSS在识别s骨炎和鉴定s骨炎方面都比MRI优越。32高度敏感的C反应蛋白(HS-CRP)的因子是Varynig疾病(例如SPA)的生物标志物。一项研究宣布,基于HS-CRP和QSS有显着差异的事实,SPA中的高HS-CRP作用于SI炎症指数,暗示着风湿病的结果,尤其是在中部三分之一。33
摘要 — 过去几年,随着量子计算硬件的快速发展,人们开发了多种量子软件堆栈 (QSS)。QSS 包括量子编程语言、优化编译器(将用高级语言编写的量子算法转换为量子门指令)、量子模拟器(在传统设备上模拟这些指令)以及软件控制器(将模拟信号发送到基于量子电路的非常昂贵的量子硬件)。与传统的编译器和架构模拟器相比,由于结果的概率性质、缺乏明确的硬件规格以及量子编程的复杂性,QSS 难以测试。这项工作设计了一种新颖的 QSS 差分测试方法,称为 QD IFF,具有三大创新:(1) 我们通过保留语义的源到源转换生成要测试的输入程序以探索程序变体。 (2) 我们通过分析电路深度、2 门操作、门错误率和 T1 弛豫时间等静态特性,过滤掉不值得在量子硬件上执行的量子电路,从而加快差分测试速度。(3)我们通过分布比较函数(如 Kolmogorov-Smirnov 检验和交叉熵)设计了一种可扩展的等效性检查机制。我们使用三个广泛使用的开源 QSS 评估 QD IFF:IBM 的 Qiskit、Google 的 Cirq 和 Rigetti 的 Pyquil。通过在真实硬件和量子模拟器上运行 QD IFF,我们发现了几个关键的错误,揭示了这些平台中潜在的不稳定性。QD IFF 的源变换可有效生成语义等价但不相同的电路(即 34% 的试验),其过滤机制可将差分测试速度提高 66%。
量子秘密共享(QSS)协议没有纠缠,从而表现出很高的安全性,该协议由于量子力学的特征而显示出很高的安全性。但是,根据定量安全性分析,比较此类协议的安全性仍然是一个挑战。基于我们先前使用单量子器和两级统一操作的协议的安全分析工作,本文考虑了具有单个Qutrits和三级统一操作的QSS协议。在我们提出的贝尔州攻击下,根据不同三级单一操作的定量安全分析在一步和两步的情况下分别提供。最后,为设计和实施此类QSS协议得出重要结论。该方法和结果也可能有助于分析基于单一操作的其他高级量子密码学方案的安全性。
基于计算复杂性的现代通信系统的安全性越来越多,特别是随着量子计算机的快速开发。幸运的是,量子通信能够在通信过程中提供信息理论安全性[1,2]。Quantum Secret共享(QSS)是多部分量子通讯网络中最重要的原始人之一,它使一个受信任的方可以在只能集体重建秘密的几位参与者中分发一个秘密。QSS一直是一个积极的研究领域,研究人员致力于完善和提高其能力。通过使用后选择的Greenberger- Horne-Zeilinger纠缠而提出了测量设备不依赖的方案[3]。最近已经分析了参与者的攻击[4]针对特定的确定性协议。最近,Shen等人。[5]利用相干状态的相位调制来编码其QSS方案中的逻辑位,从而大大降低了实验复杂性。作者使用量子键分配安全性分析的方法来证明该方案即使对于内部参与者,也可以防止连贯攻击。通过使用与双场量子键分布相同的单光子干扰测量技术,该协议达到了
敏捷加密术允许加密核心的资源有效交换,以防基础经典加密算法的安全性受到损害。相反,多功能密码学允许用户切换加密任务,而无需对其内部工作有任何了解。在本文中,我们建议如何通过明确演示两个量子加密协议,量子数字签名(QDS)和量子秘密共享(QSS),在同一硬件发送者和接收机平台上应用这些相关原理。至关重要的是,协议仅在其经典后处理方面有所不同。该系统也适用于量子密钥分布(QKD),并且与已部署的电信基础架构高度兼容,因为它使用标准正交相位偏移键编码和杂化检测。首次修改了QDS协议以允许在接收方进行后选择,从而增强协议性能。加密原语QD和QSS本质上是多方的,我们证明它们不仅是在任务内部的播放器不诚实的情况下,而且还允许(外部)窃听量子通道时的安全。在我们的第一次原则证明中,敏捷和多功能量子通信系统时,量子状态以GHz速率分布。在2公里的光纤链接上,可以使用我们的QDS协议在不到0.05毫秒的情况下牢固地签署1位消息,并且在20公里的光纤链接上不到0.2 s。据我们所知,这也标志着连续变量直接QSS协议的首次演示。
•KUBERNETES定制开发和MLOPS平台(SKCC Accuinsight)安装自动化项目 - 大数据和MLOPS服务项目 - 部署解决方案:QK,QSS-关键呼吸: - 自定义K8S&CEPH用于在各种空气范围内使用跨越型的+Terrasible Antrasization+Accuins(MM)(使用MM)安装的k8s&Ceph(用于安装) - ArgoCD - Impact of Service Adoption : Significant reduction in installation time (from over a week to within 2 hours) and stable K8s and storage services - Client : SK INC.(C&C) - Companies Using the Service: NongHyup(2021), SK Siltron(2022.06), KB CAPITAL(2021.08), Public Procurement Service(2022.03), NH Insurance(2023.02),
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。