尽管它们的复杂性,但相互作用的系统仍负责各种有趣的现象,例如分数量子霍尔的效应[13,31,35],任何人的准颗粒的出现[12,23],多体定位[22]和量子多体scars [37]。这些现象中的许多现象都可以用少数新兴程度的自由元来描述。最简单的情况是相互作用的存在将系统转换为免费或几乎免费的系统的情况[24]。识别自由度的自由度可以用很少的参数来实现系统的效率描述,而这些参数仅在其大小上多个多种多样地生长。此外,相互作用系统中自由的出现决定了它们的热特性,淬灭的弹道/不同传播以及其准粒子激发的性质[24]。出乎意料的是,即使它们似乎具有强烈的相互作用,它们在热力学极限[15]中的表现几乎是自由的[15],例如横向和纵向线[36]或XYZ模型[17]。
数值应用。• 掌握在各种实验情况下将电子视为准粒子的概念。• 能够根据实验情况决定哪种金属模型(德鲁德、索末菲和布洛赫模型)最合适。• 理解经验伪势、布洛赫波包、电子群速度、空穴、布洛赫振荡的概念。• 理解布洛赫电子的量子描述与电导率的宏观特性之间的关系以及杂质、电子-电子相互作用和电子-声子相互作用的作用。• 掌握功函数、接触偏置、界面极化电荷的肖特基模型以及流过结的电流建模的概念。• 理解驱动微电子和纳米电子设备的量子效应。• 能够通过与实验数据单位的严格联系,将理论物理的详细章节转化为具有合理物理意义的数值应用。这一目标将通过与课程和高级数值方法的实践练习的紧密重叠来实现。
近年来,表面声波(锯)已成为一种新型技术,用于在凝结物质系统中产生准粒子传输和带调节。锯子通过压电和应变场与相邻材料相互作用,沿波传播的方向拖动载体。大多数关于大声效应效应的研究都集中在载体的集体方向运动上,该方向产生了稳定的电势差,而动态空间电荷调制的振荡成分对于探测仍然具有挑战性。在这项工作中,我们报告了石墨烯中振荡大声效应的连贯检测。这是通过在跨胶质传感器发出的电磁波的时空电荷振荡的相干整流来实现的。我们系统地研究了整流信号的频率和门依赖性,并定量探测由锯驱动的载体重新分布动力学。观察振荡的大声电效应可直接访问通过传输实验引起的锯引起的动态空间电荷调制。
相奇异性是波幅度为零的相位划分点,表现为相位顶点或波前位错。在光学和电子束的领域中,已经广泛探索了相位奇异性,证明了与轨道角度膜的密切联系。直接对轨道角动量对纳米级奇异性的影响的直接局部成像仍然具有挑战性。在这里,我们通过扫描隧道显微镜和光谱研究来研究轨道角动量在石墨烯中,尤其是在原子水平上的相位奇异性中的作用。我们的实验表明,由局部旋转对称性势能引起的不同轨道角动量状态之间的散射可以产生额外的相位单位,并在真实空间中导致稳健的单波偏位。我们的结果为探索轨道自由度对准粒子干扰过程中量子相的影响铺平了道路。
bernal双层石墨烯宿主甚至是分母的分数量子霍尔状态,被认为是由具有非亚伯式粒子激发的pfaffian波函数描述的。在这里,我们报告了使用热激活的转运和直接测量化学势的双层石墨烯中分数量子霍尔能隙的定量确定。我们发现传输激活差距为5。在B = 12 t时为1 k,在半填充的n = 1 Landau水平上,与PFAFFIAN状态的密度基质重新归一化组计算一致。但是,测得的热力学间隙为11。6 K小于对清洁限制的理论期望,大约是两个因子。我们分析了具有长波长障碍的分数准颗粒的wigner晶体的分数填充物附近的化学潜在数据,从而解释了这种差异。我们的结果定量地建立双层石墨烯是一个可靠的平台,用于探测预期出现的非亚洲人作为偶数派纳分子状态的基本激发。
最近,在碳悬浮的石墨烯(SG)中观察到了分数量化的霍尔效应,这是碳的自由单层,在那里发现它持续到t = 10 k。这些实验的最佳结果是在微米大小的液压上获得的,只能在其上进行两端的运输测量。在这里,我们从两端电导率中提取分数量子霍尔状态的转运系数的问题并解决了问题。我们基于二维磁转运的共形不变性开发一种方法,并通过分析SG上的测量结果来说明其使用。从从测得的两端电导率中提取的纵向电导率的温度依赖性,我们估算了分数定量ν= 1 /3状态中准颗粒激发的能量间隙。发现间隙比基于GAAS的结构大得多,这表明悬浮石墨烯中的电子相互作用更强。我们的方法为悬浮石墨烯和其他纳米级系统中量子传输的研究提供了一种新工具。
我们报道了最佳掺杂三斜铁的超级电阻器的准颗粒松弛动力学(Ca 0。85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5,使用极化超快光泵探针光谱法t c = 30 k。 我们的结果揭示了夜间闪光引起的各向异性瞬态反射性在超过120 K以下,并且在超导状态下持续存在。 高泵功能下的测量值分别以1.6、3.5和4.7 THz的频率显示出三种不同的,相干的声子模式,分别对应于1 g(1),E G和A 1 g(2)模式。 高频A 1 g(2)模式对应于具有标称电子耦合常数λa 1 g(2)= 0的feas平面的C轴极化振动。 139±0。 02。 我们的结果表明,在低温下,超导状态和列表状态共存但相互竞争,并且有可能与1 g的声子与库珀对形成(Ca0。>)的形成。 85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5。85 LA 0。15)10(pt 3 as 8)(fe 2 as 2)5,使用极化超快光泵探针光谱法t c = 30 k。我们的结果揭示了夜间闪光引起的各向异性瞬态反射性在超过120 K以下,并且在超导状态下持续存在。高泵功能下的测量值分别以1.6、3.5和4.7 THz的频率显示出三种不同的,相干的声子模式,分别对应于1 g(1),E G和A 1 g(2)模式。高频A 1 g(2)模式对应于具有标称电子耦合常数λa 1 g(2)= 0的feas平面的C轴极化振动。139±0。02。我们的结果表明,在低温下,超导状态和列表状态共存但相互竞争,并且有可能与1 g的声子与库珀对形成(Ca0。85 LA 0。 15)10(pt 3 as 8)(fe 2 as 2)5。85 LA 0。15)10(pt 3 as 8)(fe 2 as 2)5。
以越来越多的精度控制电子对于经典和量子电子既重要。自激光发明以来,驯化了连贯的光的每个属性,使其成为科学,技术和医学最精确的工具之一。连贯的控制涉及将光的精美定义特性转导向电子系统,从而将连贯性赋予其组成电子的属性。相干控制中的早期开发利用了高斯激光束和空间平均测量。激光的空间结构和轨道角动量为凝结物质系统中的电子和准粒子激发提供了额外的自由度。从这个角度来看,我们首先介绍了半核对器中相干控制的概念。然后,我们继续讨论结构化光束在相干控制中的应用以及对空间分辨出术检测的要求。随后,我们介绍了使用圆柱矢量束和具有结构相位前部的激光束进行的最新实验的概述。最后,我们提供了这些发展和未来感兴趣的方向的视野。
太赫兹 (THz) 时域光谱有助于深入了解半导体异质结构中的电子动力学。高场 THz 光谱探测 GaAs 量子阱 (QW) 系统的激子非线性响应,并能够在时域中测量其相干动力学。因此,THz 光谱可以让人们探索多体相互作用的基本特性以及半导体纳米器件技术的潜力。这项工作使用计算方法分析了半导体微腔中的光物质相互作用。当 QW 微腔中的激子与腔光子强耦合时,会形成一种称为激子极化子的新准粒子。本论文表明,具有光学和 THz 激发的经典耦合谐振子可用作模型来模拟激子极化子动力学及其量子相干现象。通过采用激子模式的时间相关衰减和改变光脉冲和 THz 脉冲之间的延迟,演示了激子-光子耦合系统的时间演化。由于强光物质杂化,在频谱中观察到正常模式分裂。最后,将本工作计算出的激子-极化子振荡与使用半导体布洛赫方程获得的参考计算结果进行了比较。
约瑟夫森隧道结通常被视为一个整体物体:具有单一正弦电流相位关系的超导电路元件,或者更抽象地说,只是一个非线性电感器。这种简单性以及高质量设备制造方法的发展使得约瑟夫森结能够以多种富有成效的方式应用。在本次研讨会上,我们将考虑一种与约瑟夫森电路具有内部自由度的不同的情形,这对于创建新型设备(例如受保护的量子比特、约瑟夫森二极管和模拟量子物质模拟器)是必不可少的。在单个结中,这些是安德烈夫束缚态,它们位于与超导储层相连的非超导区域中。这些是介观量子电子学的一个活跃研究领域,因为它们通过额外的物理特性丰富了结,包括费米子准粒子激发和对电流相位关系的非正弦贡献。或者,隧道结的串联阵列可以有效地模拟这种物理的许多方面,包括以数学上精确的方式,我们可以将其识别为来自内部自由度的类似调整。超导量子比特社区采用这种方法,因为它利用了成熟的约瑟夫森隧道结。