我们研究有向图中的多智能体编队控制问题。相对配置用单位对偶四元数 (UDQ) 表示。我们将这种加权有向图称为单位对偶四元数有向图 (UDQDG)。我们证明,当且仅当对偶四元数拉普拉斯算子与底层有向图的无加权拉普拉斯算子相似时,所需的相对配置方案在 UDQDG 中是合理的或平衡的。提出了直接法和单位增益图法来解决一般单位加权有向图的平衡问题。然后,我们研究了一般非单位加权有向图的平衡问题。报告了 UDQDG 的数值实验。
核电行业的复兴,拥有14家世界上最大的银行和金融机构,保证了他们对COP28到2050年三倍的COP28目标的支持。 此外,在10月中旬,在COP29开学之前的几周前,欧盟部长们认可核能,这是他们即将举行的联合国气候峰会的授权的一部分,反映了欧洲对原子力量的立场的转变。 在过去的二十年中,由于项目融资的复杂性,高风险以及遵守环境,社会和治理标准的问题,核电厂一直在努力与风,太阳能和天然气抗衡。 新核电站的建设集中在亚洲和中东,但是,包括美国,英国和日本在内的国家越来越多地将其重点放在核能解决方案上,以满足其净零承诺。 预计,这种转变将为新一波的核电站提供融资,以帮助实现国家和公司的气候目标。核电行业的复兴,拥有14家世界上最大的银行和金融机构,保证了他们对COP28到2050年三倍的COP28目标的支持。此外,在10月中旬,在COP29开学之前的几周前,欧盟部长们认可核能,这是他们即将举行的联合国气候峰会的授权的一部分,反映了欧洲对原子力量的立场的转变。在过去的二十年中,由于项目融资的复杂性,高风险以及遵守环境,社会和治理标准的问题,核电厂一直在努力与风,太阳能和天然气抗衡。新核电站的建设集中在亚洲和中东,但是,包括美国,英国和日本在内的国家越来越多地将其重点放在核能解决方案上,以满足其净零承诺。预计,这种转变将为新一波的核电站提供融资,以帮助实现国家和公司的气候目标。
硅稳定的同位素比(表示为δ30Si)在生物二氧化硅中已被广泛用作海洋和湖泊环境中过去和现在的生物地球化学循环的代理,尤其是营养利用重建。对出版趋势的分析表明,在过去五年中,δ30Si在第四纪科学问题上的应用大幅下降。同时随着δ30SI代理应用的减少,我们正在了解更多有关其复杂性的信息:扩大的工作是突出了用于应用基于δ30Si的偏见的偏见,警告或并发症,用于沉积物记录。这些包括物种特异性硅同位素分馏因子的演示(即“重要效应”)或Fe或其他痕量金属影响硅同位素分馏的潜力。其他人推断出生物二氧化硅溶解的潜力改变了初始δ30Si值,或者通过早期的成岩化过程质疑初始δ30Si的保存。另一个受到更多关注的挑战是围绕将δ30Si值解散到反映生物逻辑生产力的信号中,并反映了由全系统和/或循环变化驱动的溶解硅δ30Si的变化。最后,许多研究集中在分析困难上,尤其是在样本制备过程中,与实现和证明污染物的无污染物二氧化硅有关。这些挑战使我们认为第四纪科学界正在远离硅同位素代理,因为他们对其可靠性和实用性失去了信心。在此关注硅藻 - 湖泊和海洋中的主要生物启示剂 - 我们合成了理解基于δ30SI的差异和警告的进展,以回答是否保证了基于δ30Si的基于δ30Si基于δ30Si的季节。我们建议,通过一些简单的步骤可以容易实施,并且随着关键知识差距的缩小,没有理由相信硅同位素在第四纪科学中没有任何希望的未来。
背景:由于绝大多数先进的mRNA递送系统优先在肝脏中积累,对非肝脏mRNA递送平台的开发需求正在加速增长。方法:在本研究中,我们通过N-季铵化策略制备了阳离子脂质类纳米组装体。研究了它们的物理化学性质、体外mRNA递送效率和小鼠的器官向性。结果:在脂质类纳米组装体上引入季铵基团不仅增强了其体外mRNA递送性能,而且在小鼠静脉注射后完全改变了它们从脾脏到肺部的向性。季铵化脂质类纳米组装体对肺部表现出超高的特异性,主要被肺部免疫细胞吸收,导致超过95%的外源性mRNA在肺部翻译。此类mRNA递送载体即使在环境温度下储存一年以上后仍保持稳定。结论:季铵化为设计新的肺靶向 mRNA 递送系统提供了一种无需掺入靶向配体的替代方法,这应该会扩展 mRNA 对肺部疾病的治疗适用性。
摘要:我们报告了计算预测的平面外化学秩序的过渡金属硼,标记为O -mab相,TA 4 m'sib 2(m'= V,Cr)和结构上等效的固体固体溶液mob a相2。使用构成元素的固态反应烧结制备硼化物相。高分辨率扫描透射电子显微镜以及粉末X射线衍射模式的rietveld细化表明,合成的O-MAB阶段TA 4 CrSIB 2(98 wt%纯度)(98 wt%纯度)(ta 4 vsib 2(81 wt%纯度)具有化学秩序(81 wt%纯度),在TA上具有16 l TA的位置,并在16 l的位置中cr ca and ca c cr ca c cr ca c cr ca c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c cr and c cr the 4 c. (46 wt%纯度)得出结论以形成无序的固体溶液。密度功能理论(DFT)计算来研究动态稳定性,弹性特性和电子密度状态,证实了稳定性并建议基于CR和MO的硼化物比基于V和NB的硼化物更稳固。■简介
2 Deuring 对应 32 2.1 三幕范畴等价 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... 50 2.4.3 非最大阶的情况 . ...
摘要 — 随着美国可再生能源渗透率的提高,通过提供足够的频率控制能力来维持低惯性电网的稳定性和可靠性成为一项挑战。先进的抽水蓄能技术 (APSH) 不仅作为能源供应商,而且作为辅助服务提供商,有望在未来电网中发挥重要作用。本文研究了使用四元抽水蓄能水电 (Q-PSH) 作为新提出的 APSH 技术之一来提供一次频率响应的影响。为了量化 Q-PSH 对美国西部互联频率响应的影响,在 GE 正序负荷流 (PSLF) 平台上开发了一个用户定义的 Q-PSH 动态模型,并在一系列详细的美国西部电力协调委员会 (WECC) 规划案例中实施,其中可再生能源渗透率分别为 20%、40%、60% 和 80%。仿真结果表明,与传统 PSH 相比,Q-PSH 有助于改善频率最低点和稳定频率。
摘要:CSPBBR 3量子点(QD)是光电设备的有希望的候选者。用二烷基铵(例如二二二烷基二甲基溴化物溴化物(DDAB))取代油酸(OA)和油胺(OLA)盖剂,表明外部量子效率(EQE)的含量增加了0.19%(OA/OLA)至13.4%(dd.4%)。设备的性能显着取决于QD固体中光激发载体的分解长度和迁移率。因此,我们通过构造双尺寸的QD混合物来研究DDAB限制的CSPBBR 3 QD固体中的电荷载体传输动力学。可以通过定量改变两个尺寸的QD之间的比率来监测荷兰载波的差异,从而改变了每个QD群集中载体的平均自由路径。从超快瞬态吸收光谱获得的QD固体的激发态动力学表明,由于强量量子的构造,光生的电子和孔很难在小型QD(4 nm)中使用。另一方面,大型QD(10 nm)中的光诱导的电子和孔都将与小型QD插入界面,然后进行重组过程。将载载物的不同研究与混合物中的QD组件上的蒙特卡洛模拟相结合,我们可以在10 nm cspbbr 3 qds中计算出电荷载体的差值长度为〜239±16 nm,以及电子和电子的迁移率,以及2.1(2.1(2.1(0.6))和0.6(0.6)(0.69(±0.6)(0.69)(0.69)(±0.69)(±0.69(±0.6)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±0.69)(±±0.6)(±±0.6)(±±±9)(±±0.6) 分别。这两个参数均表示DDAB限制的QDFIFM中有效的电荷载体传输,这合理化了其LED设备应用程序的完美性能。关键字:超快光谱,扩散长度,cspbbr 3,ddab,量子点光伏,载体传输,电荷转移■简介
分析了智利中部安第斯山脉南部(32 – 34.5 S)上新世至近期大型(N 0.1 平方公里)岩崩的分布和年龄,以确定岩崩触发机制及其对区域景观演变的影响。大多数岩崩发生在西部主科迪勒拉山脉,并沿着主要地质构造聚集。变异分析显示岩崩、地质构造和浅层地震之间存在空间相关性。使用现有的 14 C 和 40 Ar/ 39 Ar 日期以及选定岩崩的新宇宙成因核素暴露年龄校准了相对年代序列。使用岩崩区域分布的经验关系估计了岩崩引起的沉积物产量。在整个第四纪,岩石滑坡将沉积物输送到溪流中,其速率相当于 0.10± 0.06 mm a − 1 的剥蚀速率,而使用短期(20 年)地震记录的估计值为 0.3 − 0.2 +0.6 mm a − 1 。沉积物转移的估计值和岩石滑坡的空间分布反映了一种地貌,其中构造和地质对剥蚀的控制比气候更为重要。© 2008 Elsevier B.V. 保留所有权利。
摘要................................................................................................................................iii
