koreascience.or.kr › article › CFKO2... 作者:HJ Kim · 2007 — 作者:HJ Kim · 2007 边缘提取 光栅化 ... 检测器 (Canny, 1986)。我们让 a = 1, /9 = 1, ... 提取 3D 建筑结构,韩国遥感杂志。
使用 49 个独立检查点 (ICP) 对正射 QuickBird 高分辨率卫星图像 (HRSI) 产品(地面采样距离 (GSD) 约为 70 厘米)的几何精度进行了评估。在 QuickBird HRSI 上选择的 ICP 表示为独特的点特征,有利于在 HRSI 和地面上进行高精度测量,并广泛分布在研究区域。这些 ICP 是使用基于与 QuickBird HRSI 相同的坐标参考和投影的南差分全球定位系统 (DGPS) 测量的,以获得其相应的地面控制点 (GCP) 坐标。所得结果表明,差异幅度很小且具有随机性。计算得出的均方根误差(RMSE 2D 为 0.722481 米)和调整后的 R 2(0.999999)表明,获得的精度符合正射校正 QuickBird HRSI 的分辨率。因此,正射校正 QuikBird HRSI 可用于地图创建、变化检测、图像分析,以及在不使用地面控制点的情况下对偏远地区的特征进行地理定位以及其他相关的测绘应用。
土地覆盖类别包括:树冠、草地和灌木(包括农田)、建筑物、不透水层(街道、车道和停车场)、水和裸土。主要土地分类是使用 eCognition Developer 8.0 版中提供的基于对象的图像分析 (OBIA) 技术进行的。该项目使用的辅助软件包括 ArcGIS 9.3.1 版和 ERDAS Imagine 2010 版。使用 Python 2.5 版脚本语言编写了其他自定义例程,以支持所需的处理。圣保罗市提供了 Shapefile 信息,以帮助识别街道、建筑物、道路和高速公路以及水景。实施该项目遵循了以下主要步骤:• 使用 ERDAS Imagine 中的减法分辨率对 QuickBird 影像进行全色锐化。• 利用可用的 RPC 文件和 30 米 DEM 层对 QuickBird 影像进行地理配准。• 对激光雷达数据进行地理配准以匹配 QuickBird 影像。• 使用自定义 Python 脚本将地理配准影像划分为 750 x 1000 米的图块,重叠度为 10%,以便进一步处理。此步骤创建了 180 个单独的图块。• 包含道路信息的街道图层在 ArcGIS 中缓冲一米,以创建多边形形状文件,随后在 eCognition 中使用。• 开发了三套规则来处理城市的以下子部分:o 西部小部分,包括六月的 QuickBird 和激光雷达数据。o 城市东侧的 1,500 米带,有 5 月份的 QuickBird 影像,但没有激光雷达数据。o 城市其余大部分区域有 5 月份的 QuickBird 和激光雷达数据。• 3 个规则集中的每一个都使用类似的过程创建: o 检查影像以找到代表性图块。o 创建支持性影像层,例如归一化差异植被指数。(NDVI) 和 Lee 的 Sigma 边缘提取有助于提高分类效率。o 从 Shapefile 生成表示道路和水特征的图像对象,并按此进行分类。o 如果有激光雷达数据,则首先将图像分割成高特征和短特征。o 利用 eCognition 中提供的算法对图像的剩余部分进行分类,利用光谱信息以及图像解释的其他元素,例如上下文、形状、大小、位置、关联、图案、阴影和纹理。o 将分类从 eCognition 导出到 TIF 光栅文件中。• 每套规则都经过了微调,并在城市中额外的随机图块上进行了测试。• 使用 eCognition Server,每个最终规则集都用于对圣保罗所有部分的所有图块进行分类。• 使用 ERDAS Imagine Mosaic Pro 中的几何接缝线将各个分类图块连接成一个马赛克。• 城市的三个不同部分(由 402 个单独的图块表示)被合并到一个分类文件中。
摘要 自动建筑物提取最近被认为是遥感操作中的一项活跃研究。它已经进行了 20 多年,但由于图像分辨率、变化和细节级别,自动提取仍然遇到问题。由于物体密度高和场景复杂,这将是一个更大的挑战,尤其是在城市地区。本文将介绍一个高分辨率全色图像的理想框架,有助于可靠和准确的建筑物提取操作。提出的框架以及对领域知识(空间和光谱特性)的考虑提供了诸如场景中物体的性质、它们的光学相互作用及其对结果图像的影响等特征。为了更好地分析场景的几何性质,我们使用数字表面模型 (DSM)。已使用来自 IKONOS 和 QuickBird 卫星的各种图像对提出的算法进行了评估。结果表明,与最先进的方法相比,所提出的算法准确且有效。
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统现在通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺当量和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用三种主要方法从 QuickBird 和 IKONOS 数据生成正射影像:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法或使用影像供应商提供的 RPC 信息。前两种
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统目前通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺等效和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问权限,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用 QuickBird 和 IKONOS 数据生成正射影像的主要方法有三种:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法,或使用影像供应商提供的 RPC 信息。前两种
城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物足迹 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两个核线图像中都无法清晰地检测到建筑物轮廓的情况下。此外,尽管影像匹配提供了表示建筑物高度的 DSM,但从该 DSM 中提取的建筑物大小和形状通常
从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。
从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。
从遥感图像中自动提取建筑物轮廓线已用于更新城市地区的地理空间数据库 [1]。高分辨率星载立体 (HRSS) 传感器(例如 GeoEye、WorldView、QuickBird)的发射开启了一个新时代,提供了从太空获取立体图像和 3D 地图的可能性 [2]。事实上,建筑物识别、重建和变化检测已经使用立体图像匹配以及 3D 边缘匹配技术进行 [3,5-6]。如 [3] 所述,基于立体图像的 3D 边缘匹配提供了有希望的结果,但前提是建筑物在数据的空间分辨率方面足够大、具有简单的矩形形状并且与周围物体相比具有良好的辐射对比度。事实上,虽然使用非常高分辨率的航空图像进行 3D 边缘匹配可以详细重建建筑物轮廓线 [7],但使用星载图像,同样的方法可能会遇到问题,特别是在两幅对极图像中都无法清晰检测到建筑物轮廓的情况下。此外,虽然影像匹配提供了代表建筑物高度的DSM,但是从该DSM提取的建筑物大小和形状通常被高估,因此需要辅助信息。