摘要:抗菌耐药性(AMR)是对公共卫生的全球威胁,预测每年对1万亿美元的负面影响,因此紧急需要新颖的治疗剂。通过这些微生物形成生物膜的能力进一步增强了许多细菌对当前药物的抗性,其中细胞被包裹在黏糊糊的细胞外基质中并粘附在表面或形成细胞聚集体中。生物膜形成了物理化学障碍,可抵抗诸如小分子抗菌物等处理的渗透,使大多数治疗无效。铜绿假单胞菌是直接关注的优先病原体,它通过基因调节途径的多层控制生物膜形成,包括群体传感(QS),这是一个细胞间信号传导系统。我们最近报道了该生物体中PQSR QS调节剂的一系列抑制剂,可以增强抗生素的作用。但是,这些QS抑制剂(QSI)与浮游生物培养物相反,由于通过生物膜矩阵穿透不良,对生物膜显示了适度的影响。为了增强抑制剂的递送,将小的聚合物库设计为特定QSI的载体,其侧链有变化,以引入带正电荷或中性的部分,以帮助渗透到铜绿假单胞菌生物膜中。在一系列测定中评估了合成的聚合物,以确立其对铜绿假单胞菌中PQS QS系统抑制的影响,从聚合物中释放的抑制剂水平及其对生物膜形成的影响。发现选择的阳离子聚合物 - QSI结合物可以通过生物膜层有效穿透并释放QSI。与环丙沙星结合使用时,与在相同条件下的游离QSI和环丙沙星相比,它增强了该抗生素的生物膜抗菌活性。
假单胞菌。铜绿(p.aeruginosa)是一种重要的致病细菌,具有有限的治疗选择。在我们先前的研究中,我们在计算机研究中证明了槲皮素和美洛昔康可以充当Quorum传感系统(QS)系统LASR和P.Aerogenosa中RHLR的自动诱导者分子的抑制剂。这项研究旨在验证槲皮素和美洛昔康对LASR和RHLR基因表达的影响,以研究其对生物膜形成能力的影响,作为由(QS)系统控制的重要强大因子,并检查其与肠菌素抗生素的组合。强生物膜以前的铜绿假单胞菌分离株,将PAO1菌株作为参考菌株,分别通过槲皮素和美洛昔康的亚抑制作用。槲皮素和美洛昔康具有显着的抑制作用生物膜形成,并且对QS基因LASR和RHLR的调节降低。由实时PCR测试。此外,通过棋盘法测试了与槲皮素或美洛昔康的结肠蛋白组合。这项研究表明,槲皮素和美洛昔康都对生物膜都有显着的抑制作用。因此,它们可以用作群体传感抑制剂(QSI)。此外,发现槲皮素与colistin具有协同作用。
摘要简介:法定感应(QS)使细菌能够协调整个菌落活动,包括与感染相关的活动。法定人数淬火(QQ)抑制QS,是控制细菌感染的一种有前途的方法。已经进行了几项体外实验,以鉴定纳米颗粒(NP)为潜在的Quorum淬火抑制剂。本综述研究了纳米颗粒对法规淬火的潜力,重点是伤口病原体的QS调节的致病性。材料和方法:进行了观察性研究,以探索纳米颗粒对法规淬火病原体的能力。结果:对观察性研究的综述表明,纳米颗粒针对伤口病原体具有明显的群体猝灭能力。已证明许多纳米颗粒,包括银,金和氧化锌,可以抑制QS调节的活性,从而降低细菌毒力和生物膜的形成。这些结果表明,纳米颗粒可以用作减轻细菌感染并增强伤口愈合的有效药物。结论:纳米颗粒作为Quorum Quorch剂显示出巨大的潜力,有效地降低了伤口病原体中细菌毒力和生物膜形成。这些结果表明纳米颗粒在管理细菌感染和改善伤口愈合中的有希望的应用。1因此,细菌种群可以同步几个基因的表达以同时反应。2当特定细胞关键字:群体传感,法定人数淬火,伤口病原体,纳米颗粒引入细菌细胞具有通过产生和检测细胞外化学物质(自动诱导剂)的能力,可以被动地或活跃地通过细胞膜,称为Quorum Sensing(QS)。当它们的浓度达到特定的阈值时,自动诱导剂(AI)与具有QS系统的细菌中的转录调节剂互动,从而改变了遗传表达模式。
•QS是全球监管控制•克,革兰氏 +和古细菌中存在的QS•许多细菌响应在其自己物种的其他细胞周围的周围环境中的存在,并且在某些物种中,监管途径控制了他们自己的细胞的细胞丰富性,由其自身的细胞丰富性•QS•QS是QS的示例,不需要评估人群的典型范围(>成功的人群)(>成功的人群)(>成功的人群)(>总体上:总体上的表现:整个人群,整个人口级别,总体上,总体上,>因子产生,次生代谢产物7,DNA吸收能力,生物膜形成,物种组成
在真核生物中,已报道并深入研究了数百万个从腺苷(A)到肌苷(I)的 RNA 编辑事件;然而,在原核生物中,许多特征和功能仍不清楚。通过结合 PacBio Sequel、Illumina 全基因组测序和两种具有不同毒力的肺炎克雷伯菌菌株的 RNA 测序数据,总共鉴定了 13 个 RNA 编辑事件。重点关注 badR 的 RNA 编辑事件,该事件在两种肺炎克雷伯菌菌株的编辑水平上有显著差异,预测为一个转录因子。在 DNA 上突变一个硬编码的 Cys 以模拟完全编辑 badR 的效果。转录组分析发现细胞群体感应(QS)途径是最显著的变化,表明 RNA 编辑对 badR 的动态调控与协调的集体行为有关。事实上,当细胞达到稳定期时,检测到自诱导物 2 活性和细胞生长的显著差异。此外,在 Galleria mellonella 感染模型中,突变菌株的毒力明显低于 WT 菌株。此外,badR 的 RNA 编辑调控在肺炎克雷伯菌菌株中高度保守。总体而言,这项工作为细菌的转录后调控提供了新的见解。
摘要:群体感应 (QS) 是一种细胞间通讯机制,可调节细菌致病性、生物膜形成和抗生素敏感性。在已鉴定的群体感应中,AI- 2 QS 存在于革兰氏阴性菌和革兰氏阳性菌中,并负责跨物种通讯。最近的研究强调了磷酸转移酶系统 (PTS) 与 AI-2 QS 之间的联系,这种联系与 HPr 和 LsrK 之间的蛋白质-蛋白质相互作用 (PPI) 有关。在这里,我们首先通过分子动力学 (MD) 模拟、虚拟筛选和生物测定评估发现了几种针对 LsrK/HPr PPI 位点的 AI-2 QSI。在购买的 62 种化合物中,八种化合物在基于 LsrK 的测定和 AI-2 QS 干扰测定中表现出显着的抑制作用。表面等离子体共振 (SPR) 分析证实,命中化合物 4171-0375 特异性结合 LsrK-N 蛋白(HPr 结合域,KD = 2.51 × 10 − 5 M ),因此与 LsrK/HPr PPI 位点结合。结构-活性关系 (SAR) 强调了与疏水口袋的疏水相互作用以及与 LsrK 关键残基的氢键或盐桥对于 LsrK/HPr PPI 抑制剂的重要性。这些新的 AI-2 QSI,尤其是 4171-0375,表现出新颖的结构、显著的 LsrK 抑制作用,适合进行结构修饰以寻找更有效的 AI-2 QSI。
铜绿假单胞菌引起的慢性肺部感染是囊性纤维化 (CF) 患者发病和死亡的主要原因。针对铜绿假单胞菌群体感应 (QS) 系统的抗毒力药物作为抗生素替代品或佐剂得到了深入研究。之前在非 CF 铜绿假单胞菌参考菌株中进行的研究表明,旧药物氯硝柳胺和氯福克醇可以成功地重新用作分别针对 las 和 pqs QS 系统的抗毒力药物。然而,CF 肺中频繁出现的 QS 缺陷突变体破坏了 QS 抑制剂在 CF 治疗中的应用。在这里,我们在 100 个铜绿假单胞菌 CF 分离株中研究了 QS 信号的产生和对氯硝柳胺和氯福克醇的敏感性,旨在拓宽目前对抗 QS 化合物在 CF 治疗中的潜力的认识。结果表明,我们收集的 CF 分离株中分别有 85%、78% 和 69% 能够熟练使用 pqs、rhl 和 las QS 系统。氯硝柳胺和氯福克醇在体外抑制 QS 和毒力的能力差异很大且因菌株而异。氯硝柳胺的活性范围总体较低,其对 las 信号产生的负面影响与毒力因子产生的减少无关。另一方面,氯福克醇在 CF 分离株中表现出更广泛的 QS 抑制作用,从而降低 pqs 控制的毒力因子绿脓菌素。总体而言,这项研究强调了在进行进一步的临床前研究之前针对大量铜绿假单胞菌 CF 临床分离株测试新型抗毒力药物的重要性,并证实了先前的证据,即 CF 分离株中存在对 QS 抑制剂具有天然耐药性的菌株。然而,研究还表明,对 pqs 抑制剂的耐药性低于对 las 抑制剂的耐药性,从而支持开发 pqs 抑制剂用于 CF 的抗毒力治疗。
大脑是一个复杂而动态的系统,由相互作用的集合及其时间演化组成。脑电图 (EEG) 记录的大脑活动在学习研究和应用领域中对解读人类的认知过程起着至关重要的作用。在现实世界中,人们对刺激的反应不同,并且大脑活动的持续时间因人而异。因此,实验中收集的试验中 EEG 记录的长度是可变的。然而,当前的方法要么固定每次试验的 EEG 记录长度,这会丢失隐藏在数据中的信息,要么使用滑动窗口,这会在切片的重叠部分消耗大量计算量。在本文中,我们提出了 TOO(仅遍历一次),一种处理可变长度 EEG 试验数据的新方法。TOO 是一种卷积仲裁投票方法,它通过卷积实现滑动窗口并用 1×1 卷积层替换全连接层来打破模型的固定结构。 1×1 卷积层生成的每个输出单元对应于滑动时间窗口创建的每个切片,这反映了认知状态的变化。Ten,TOO 对输出单元采用群体投票,并确定代表整个单次试验的认知状态。我们的方法为不同长度的试验提供了一个自适应模型,只需遍历每个试验的 EEG 数据一次即可识别认知状态。我们设计并实施了一个认知实验并获取了 EEG 数据。利用从该实验收集的数据,我们进行了评估,将 TOO 与最先进的滑动窗口端到端方法进行比较。结果表明,TOO 在试验级别获得了良好的准确率(83.58%),而计算量却低得多(11.16%)。它还可能用于其他应用领域的变量信号处理。